APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Cluster No.10 for PG Programmes

(Engineering Colleges in Kannur, Wayanad & Kasaragod Districts)

Curriculum, Scheme of Examinations and Syllabi for M. Tech. Degree Programme in ENERGY ENGINEERING with effect from Academic Year 2020 - 2021

Under Mechanical Engineering

M. Tech.

in ENERGY ENGINEERING

(Total Credits: 66)

CONTENTS

Slot	Course Code	Course Name	Semester	Page
А	10ME6101	Computational Methods	1	5
В	10ME6503	Thermodynamic Power Cycles	1	7
С	10EE6505	Electrical Energy systems	1	9
D	10ME6507	Energy Resources and Utilisation	1	11
Е	10ME6513	Advanced Optimisation Techniques	1	13
Е	10ME6515	Materials and Instrumentation for Energy Systems	1	15
Е	10ME6517	Fluid Dynamics and Heat Transfer	1	18
Е	10ME6519	Energy Forecasting and Modelling	1	20
S	10GN6001	Research Methodology	1	22
Т	10ME6509	Seminar I	1	24
U	10ME6511	Energy Systems Lab	1	25
А	10ME6502	Solar Energy Systems	2	26
В	10ME6504	Thermal Energy Conservation Techniques	2	28
С	10EE6126	Energy Management	2	30
D	10ME6122	Quality and Reliability Engineering	2	32
D	10ME6516	BioEnergy Technologies	2	34
D	10ME6518	Computational Methods in Fluid Flow	2	36
D	10EE 6116	Power Conversion in Renewable Energy Systems	2	38
Е	10ME6326	Design of Heat Transfer Equipments	2	40
Е	10ME6514	Energy Efficient Buildings	2	42
Е	10ME6522	Statistical Methods for Experimental Design	2	44
Е	10ME6524	Energy Storage Technologies	2	46
V	10ME6508	Mini Project	2	48
U	10ME6512	Energy Simulation Lab	2	49
Α	10ME7505	Wind Energy Technologies	3	50
Α	10ME7507	Waste Management and Energy Recovery	3	52
Α	10ME7511	Industrial Noise Control	3	54
Α	10EE 7107	Electric Vehicle Systems	3	56
В	10ME7513	Energy, Environment and Climate Change	3	58
В	10ME7515	Energy Systems Modelling and Analysis	3	60
В	10ME7517	Project Management	3	62
	10EE7505	Electrical Drives and Control	3	64
Т	10ME7501	Seminar II	3	66
	10ME7503	Project (Phase I)	3	68
V	10ME7504	Project (Phase II)	4	70

	Number					End nester nination	Total Marks	Credits
Slot	Course Number	Name	L-T-P	Internal	Marks	Duration (hours)	Total]	Cr
А	10ME6101	Computational Methods	3-1-0	40	60	3	100	4
В	10ME6503	Thermodynamic Power Cycles	3-0-0	40	60	3	100	3
С	10EE6505	Electrical Energy Systems	3-0-0	40	60	3	100	3
D	10ME6507	Energy Resources and Utilisation	3-0-0	40	60	3	100	3
Е	10ME6xxx/	Elective I	3-0-0	40	60	3	100	3
S	10GN6001	Research Methodology	0-2-0	100			100	2
Т	10ME6509	Seminar I	0-0-2	100			100	2
U	10ME6511	Energy Systems Lab	0-0-2	100			100	1
		TOTAL	15-3-4	500	300	-	800	21

Elective I

- 10ME6513 Advanced Optimisation Techniques
- 10ME6515 Materials and Instrumentation for Energy Systems
- 10ME6517 Fluid Dynamics and Heat Transfer
- 10ME6519 Energy Forecasting and Modelling

SEMESTER 2

	umber			Marks	Er Seme Exami	ester	larks	its
Slot	Course Number	Name	L-T-P	Internal 1	Marks	Duration (hours)	Total Marks	Credits
Α	10ME6502	Solar Energy Systems	3-1-0	40	60	3	100	4
В	10ME6504	Thermal Energy Conservation Techniques	3-0-0	40	60	3	100	3
С	10EE6126	Energy Management	3-0-0	40	60	3	100	3
D	10ME6xxx/ 10EE6xxx	Elective II	3-0-0	40	60	3	100	3
Е	10ME6xxx	Elective III	3-0-0	40	60	3	100	3
U	10ME6512	Energy Simulation Lab	0-0-2	100			100	1
V	10ME6508	Mini Project	0-0-4	100			100	2
		TOTAL	15-1-6	400	300	-	700	19

Elective II		Elective III	
10ME6122	Quality and Reliability Engineering	10ME6326	Design of Heat Transfer Equipments
10ME6516	BioEnergy Technologies	10ME6514	Energy Efficient Buildings
10ME6518	Computational Methods in Fluid Flow	10ME6522	Statistical Methods for Experimental Design
10EE 6116	Power Conversion in Renewable Energy Systems		Energy Storage Technologies

SEN	IESTER 3		

		SEN	IESTER 3					
on Slot	imber			Marks	End Semester Examination		Marks	Credits
Examination	Course Number	Name	L-T-P	Internal Marks	Marks	Duration (hours)	Total Marks	Cr
A	10ME7xxx/ 10EE7xxx	Elective IV	3-0-0	40	60	3	100	3
В	10ME7xxx/ 10EE6xxx	Elective V	3-0-0	40	60	3	100	3
Т	10ME7501	Seminar II	0-0-2	100			100	2
V	10ME7503	Project (Phase I)	0-0-12	50			50	6
		TOTAL	6-0-14	230	120	-	350	14

Elective IV		Elective V	
10ME7505	Wind Energy Technologies	10ME7513	Energy, Environment and Climate Change
10ME7507	Waste Management and Energy Recovery	10ME7515	Energy Systems Modelling and Analysis
10ME7511 10EE 7107	Industrial Noise Control Electric Vehicle Systems	10ME7517 10EE7505	Project Management Electrical Drives and Control

Examination Slot	Course Number	Name	L-T-P	Internal Marks	End Semes <u>Examin</u> Warks	ster	Ma	Credits
V	10ME7504	Project (Phase II)	0-0-23	70	30		100	12
		TOTAL	0-0-23	70	30	-	100	12

TOTAL NUMBER OF CREDITS: 66

Course	e No.	Course Name		T-P: edits	Year of Introduction				
10ME	6101	COMPUTATIONAL METHODS	3-1	-0: 4	2015				
	Course Prerequisites Basic knowledge in mathematical methods at the UG level								
1. To m 2. To	 Course Objectives 1. To be capable of developing a thorough knowledge in computational techniques to aid in the modeling and analysis of energy systems. 2. To lay a sound computational foundation for further independent research in energy 								
Syllabus First-orde equations differenti Probabili	er differen s, Laplace al equation ty, distrib	ntial equations, Second order differential equations, Ne transforms, systems of differential equations, Series ons, Boundary value problems and Fourier series, Par putions, Moments, Estimation Theory, Correlation, Re imization Nonlinear programming.	soluti tial di	ons, Hig fferentia	her-order l equations,				
Expected On succe 1. H 2. B 3. B 4. G	l Outcon ssful com ave a stro e able to e able to ain a goo		distril proble	butions ms and s					
Reference 1. En 2. SI 3. G	ces rwin Krey hepley L upta, S.C	yzig, Advanced Engineering Mathematics, John Wile Ross, Differential Equations, John Wiley & Sons, Th . and Kapoor, V. K., Fundamentals of Mathematical Delhi, 2001	ird Ed	lition, 20					
4. K H 5. S.	alyanmoy all of Ind	y Deb, Optimisation for Engineering Design - Algorit			-				
	507	Course Plan							
Module		Contents		Hours	Semester Exam Marks (%)				
Ι	First-ord equation differen method, vibratio step fun function	order kian nical rms,	8	15					
II	plane, a	s of differential equations, solutions to systems, p solution involving real, complex, repeated Eigenva place transforms, solving nonhomogenous differe	lues	10	15				

	equations, Modeling using systems of differential equations,		
	series solutions, series solution about an ordinary point, solutions to Euler differential equations.		
	First Internal Examination		
III	Higher-order differential equations, linear homogenous differential equations, solution using undetermined coefficients, the variation of parameters and Laplace transforms, systems of differential equations, series solution, Boundary value problems and Fourier series, Eigenvalues and Eigenfunctions in BVP, periodic functions and orthogonal functions, Fourier sine, cosine and full series, the convergence of Fourier series, Partial differential equations, heat equation, wave equation, solution of the heat equation with non-zero temperature boundaries, Laplace equation, vibrating string.	12	15
IV	Probability, Random variables, Binomial, Poisson, Geometric, Uniform, Normal, Exponential distributions, Moments, Moments generating functions and their properties, Functions of Random variables. Estimation Theory, Correlation, Regression, Partial and Multiple correlations, Partial and Multiple regression, Estimation of parameters using maximum likelihood estimator and method of moments.	10	15
	Second Internal Examination		
V	Concepts of optimization: Engineering applications-Statement of optimization problem-Classification - type and size of the problem. Linear programming: Standard form-Geometry of LP problems-Theorem of LP-Relation to convexity - formulation of LP problems - simplex method and algorithm -Matrix form- two-phase method. Duality- dual simplex method- LU Decomposition. Sensitivity analysis. Artificial variables	12	20
VI	Nonlinear programming: Nonlinearity concepts-convex and concave functions- non-linear programming - gradient and Hessian. Unconstrained optimization: First & Second-order necessary conditions-Minimisation & Maximisation Local & Global convergence-Speed of convergence. Basic decent methods: Fibonacci & Golden section search - Gradient methods - Newton Method-Lagrange multiplier method - Kuhn- tucker conditions. Quasi-Newton method- separable convex programming - Frank and Wolfe method.	12	20

Course	e No.	Course Name		Γ-P: edits	Year of Introduction				
10ME	6503	THERMODYNAMIC POWER CYCLES	3-0-	-0:3	2020				
	Course Prerequisites Basic Understanding of Thermodynamics.								
 To enable Discu Outlin Comp Estim 	3. Compute the performance of heat engines, refrigeration and air conditioning systems								
Syllabus Fundame fuels, bo cycles, ga	ntals of iler type as turbin	and compressors. thermodynamics, Laws of Thermodynamics, exerges, Rankine cycle, Binary vapor cycle, Cogeneration Power Plant Components, Air Compressor, Re ems, Cooling towers, Comfort factors, principles of air	n Tec frigera	chnology ation cy	y, Gas power cle, Steam jet				
Expected On succe 1. 2.	l Outcon essful co Apply thermo Apply		forma	nce of y					
Reference 1. 2. 3. 4. 5.	Yunus Edition Sonntag Wiley s Saad, M 1989 El Wak Stoecke	A. Cengel and Michael A. Boles, Thermodynamics-A, Tata McGraw Hill Education Private Limited, 2011 g, R. E. and van Wylen, G.J., Fundamentals of The student Edition, 2007. A. A., Thermodynamics for Engineers, Prentice-Hall o fil M. M., Power Plant Engineering, McGraw Hill, 1 st E er, W. F., Refrigeration and Air Conditioning, McGraw da H. S., Understanding Combustion, Universities Pres	n Eng rmody f India Editior Hill,	jineering ynamics a Pvt. L n, 2010. 4 th Editi	, 6 th Edition, td.2 nd Edition,				
0.	WIUKUII	Course plan	5, 200	19					
Module		Content		Hours	Semester Exam Marks (%)				
Basics of Thermodynamics - Thermodynamic systems and postulates, Zeroth law of thermodynamics, First Law of Thermodynamics, Second Law of Thermodynamics, Thermodynamic equilibrium, Thermodynamic relations, stability and phase transition Exergy analysis: Concept of exergy - exergy analysis of power plant cycles and Refrigeration cycle.					15				
II	Fossil f and Thermo	Tuel properties, Fuel combustion equations (stoichiome non-stoichiometric), Air fuel ratio, Combus odynamics- calculation of heat of formation & heat stion, Analysis of products of combustion, Conversion	tion t of	7	15				

	volumetric and gravimetric analysis.		
	Boiler Classifications and types-Accessories		
	First Internal Examination		
ш	Vapour and combined power cycles: Carnot Cycle, Rankine cycle, Reheat cycle, Regenerative cycle, direct contact and surface contact regenerators, Binary vapour cycle, Topping – Bottoming, Organic Rankine Cycles, Thermodynamics of combined cycles, Advantages of Cogeneration Technology.	7	15
IV	Gas power cycles - Stirling cycle, Ericsson cycle, Air standard cycles - Otto cycle, Diesel Cycle, Dual cycle, Brayton cycle, Air standard cycle for jet propulsion, Brayton cycle with inter cooling, reheating & regeneration. Integrated Gasification Combined Cycle (IGCC).	7	15
	Second Internal Examination		
V	Air Compressor - Types, construction and working, Effect of clearance, work of compression without clearance, Perfect intercooling, Compressor efficiencies and mean effective pressure.	7	20
VI	 Refrigeration cycle, Refrigerators, Refrigeration by non-cyclic process, Vapor compression refrigeration cycle and its performance analysis. Absorption refrigeration cycle, Absorption refrigeration systems. Steam jet refrigeration systems, cooling towers. Comfort factors, principles of air conditioning – psychrometric processes. 	7	20
	Cluster Level End Semester Examination		1

Course N	o. Course Name	L-T Crea		Year of Introduction	
10EE65	5 ELECTRICAL ENERGY SY	STEMS 3-0-0	0:3	2020	
10EE6505ELECTRICAL ENERGY SYSTEMS3-0-0: 32020Course Prerequisites Basic knowledge of electrical engineering at the UG levelCourse ObjectivesThis course provides an intensive introduction to the AC system, AC system losses and power factor correction, operation and control of power system, solar and wind energy systems and energy storage techniques with an emphasis on their technology and applications.SyllabusAC system fundamentals, power generation, transmission and distribution, load dispatch, automatic generation control, automatic voltage regulator, power factor and reactive power, power factor improvement, solar and wind power systems, converters for solar and wind power systems, energy storage, electric vehicles, harmonics in the power system.Expected OutcomesOn successful completion of the course, the student will be able to 					
4. DP Tech	a B.R., Power System Analysis and Design, S Kothari, K C Singal, Rakesh Panjan, Renewab nologies, PHI, 2 nd Edition, 2011.	ble Energy Sources ar			
J. KODE	rt A. Huggins, Energy Storage, Springer, 201	0.			
	Course Plan			~	
Module	Content		Hours	Semester Exam Marks (%)	
I g	eview of AC system fundamentals, Indian po ructure of power system, Sources of energy a eneration schemes, Power system economics <u>bistributed Generation and smart grid- Introdu</u>	and various power and tariff. action.	7	15	
t II d a F	Transmission and Distribution, Comparison of AC and DC transmission, Components of overhead transmission lines, Representation of power system components- Single line				
	First Internal Exami	nation			
III I	conomic Dispatch Neglecting Losses, Optim neluding Transmission Losses, automatic g utomatic voltage control.		8	15	

IV	Concept of power factor and reactive power, causes and effects of low power factor, advantages of improved power factor, energy saving by power factor improvement through a capacitor, synchronous condenser. Active Shunt Compensators, Static Compensators and Flexible A.C. Transmission System. Second Internal Examination	6	15
v	Solar energy systems, wind energy conversion systems. Components of HAWT. Converters for grid-connected PV and wind energy systems- Half-bridge inverter, full-bridge inverter, sine PWM inverter. Maximum power point tracking in PV inverters.	8	20
VI	 Energy Storage- Battery storage, Thermal Storage, Compressed air storage, Pumped hydro storage, fuel cells, Flywheel - Supercapacitors, Solar electrolytic hydrogen production. Electric and hybrid electric vehicles. Power quality issues- Problem of harmonics in power system, sources of harmonics, performance measures, harmonic mitigation. 	6	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P: Credits	Year of Introduction
10ME65(07 ENERGY RESOURCES AND UTILISATION	3-0-0: 3	2020
Course Pr	rerequisites		
	tal knowledge in thermodynamics and Fluid mechanics		
Course Ob			
	the students to		
	Create awareness about various energy sources and the av	ailability of conv	entional fuel
	reserves for the future.	11.	
	introduce fundamental concepts about solar energy system		
	impart an idea about the potential of wind energy and the wind power	ineoretical conce	pts to utilize
	wind power. Impart an understanding about the working of OTEC systems	am gaotharmal a	naray eyetam
	and different possible ways of extracting energy from oce	-	nergy system
	Introduce the different Hydrogen Energy Conversion Syst		olications
Syllabus	nitoduce the different frydrogen Energy Conversion Syst	enis and then ap	bileations
	d Indian energy scenario, Sector-wise energy consumptio	n in the nast nree	sent and future
	ty of solar energy and different types of solar collectors, I		
	othermal energy, OTEC, tidal and wave energy, Hydroge		
Expected C			Join Systems.
-	sful completion of the course, the student will be able to		
	Explain the current world and Indian energy scenario and	the various renew	vable and non-
	renewable energy sources.		
	Describe the working of different types of stationary and s	un-tracking sola	r energy
	collectors	C	23
3. 1	Explain the potential of wind energy and the working of v	ind energy conv	ersion systems
4. I	Design a simple biogas plant.		-
5. I	llustrate the applications of different renewable energy so	ources like ocean	thermal,
ł	biomass, geothermal energy etc.		
6. I	Discuss the different Hydrogen Energy Conversion System	ns	
Reference	25		
1 1		2010	
	World Energy Outlook 2019, International Energy Agenc India 2020 Energy Policy Review, International Energy A		
		•••	Compony I td
	Sukhatme, S.P., Nayak, J. K., Solar Energy, Tata McGraw New Delhi, 2017.	^r min rubiisiing	Company Ltd.
	www.Denn, 2017. Γwidell J. W., Weir A. D., Renewable Energy Resources,	Third Edition C	RC Press 201
	lefferson W., Tester et.al., Sustainable Energy: Choosing		
	Press, 2012.	r mong options	, 110 10111
	Fiwari G. N., Ghosal M. K., Fundamentals of renewable e	nergy sources A	Inha Science
	International Ltd.	noigy sources, A	
	Godfrey Boyle, Renewable Energy: Power for a Sustainal	le Future, Oxfor	d University
	Press, 2012	it i ature, entri	- Chiversity
	Roland Wengenmayr, Thomas Buhrke, Renewable Energy	v: Sustainable en	ergy concepts
	For the future, Wiley – VCH, 2012.		
	Canan Acar, Ibrahim Dincer., Comprehensive Energy Sys	tems, Elsevier. 2	018
<i></i>	Course Plan		

Module	Content	Hours	Semester Exam Marks (%)
Ι	Introduction to energy resources and utilization: Forms of Energy, the importance of energy consumption as a measure of prosperity, Per Capita Energy Consumption. Conventional and non-conventional energy resources, Global and Indian energy scenario, Sector-wise energy consumption, Coal, Oil, Natural gas, Nuclear power and Hydro-their utilization pattern in the past, present and future.	7	15
Π	Solar energy: Availability and limitations; Sun-Earth angles; Sun path diagram; Solar radiation, Extraterrestrial solar radiation, Terrestrial irradiation; solar radiation on horizontal and inclined planes. Solar energy collectors: stationary collectors-Flat plate collectors, Compound parabolic collectors, Evacuated tube collector; Sun tracking concentrating collectors: Parabolic trough collectors, Fresnel collectors, Parabolic dish collectors, Heliostat field collectors; Thermal analysis of flat plate collectors: Absorbed solar radiation, Collector energy analysis, Temperature distribution, Collector efficiency factor.	7	15
	First Internal Examination		
III	Wind energy: availability; Turbine types: Horizontal axis machines, vertical axis machines, Concentrators; Linear momentum and basic theory: Energy extraction, Axial force, Torque, Drag machines; Dynamic matching: optimal rotation rate, tip speed ratio, Extensions for linear momentum theory; Blade elementary theory.	8	15
IV	Energy from biomass: Sources of biomass, Different species, Conversion of biomass into fuels; Energy through fermentation, Pyrolysis, gasification, combustion; Aerobic and anaerobic bio- conversion: Types of biogas plants: Design and operation.	7	15
	Second Internal Examination		
V	Geothermal energy: Availability, system development and limitations. Ocean thermal energy conversion, Wave and tidal energy, Scope and economics, Introduction to integrated energy systems.	6	20
VI	Hydrogen Energy Conversion Systems: Combustion-Based Hydrogen Energy Conversion Systems, Chemical, Physical and Electrochemical Hydrogen Energy Conversion Systems, Hydrogen for Transportation Sector, Hydrogen for Portable Applications	7	20
	Cluster Level End Semester Examination		•

	No.	Course Name	L-T Cree		Year of Introduction
10ME	5513	ADVANCED OPTIMISATION TECHNIQUES 3	- 0 -	- 0: 3	2020
Prerequi Basics of		as research at UG level			
1. For 2. Sol 3. Ap Syllabus Mathema	the studen mulate eng ve linear ar ply differen tical progra	ts to ineering problems as mathematical programming pro- nd non-linear optimization problems using analytical at algorithms for solving optimization problems mming problems, Unrestricted and classical optimiz nethod of feasible directions, Integer and dynamic p	meth	ods Const	
On succes 1. Fo 2. Ay 3. Ay Reference 1. Tah 2. Rao 3. Kan	ormulate en oply differe oply differe es na H. A., Op o S. S., Eng mbo N. S.,	etion of the course, the student will be able to gineering problems as mathematical programming p ent exact methods to solve optimization problems ent algorithms to solve constrained and unconstrained perations research: an introduction, 10 th Edition, Pea ineering optimization: theory and practice, John Wil Mathematical programming techniques. Affiliated E	d optin rson, ley & ast-W	mizatio 2017. Sons, 2 Vest Pre	2019 ess, 2008.
4. Sin		1., Nonlinear programming for operations research.	Prenti	ce-Hal	l, 1975.
Module		Content	I	Hours	Semester Exam Marks(%)
Ι	Programm solving LF	ical formulations of engineering problems - Lind ing Problem formulations, Simplex method = PP, Exceptional cases in LPP, Duality and post optin Dual Simplex method.	for	8	15
II	Programm	Programming problem: Applications of Integing problems; Integer Programming algorithm ane method, Branch and Bound method.	-	8	15
		First Internal Examination			
III	Forward	Programming - Bellman's principle of optimali recursion and backward recursion, Applicati Shortest route and Knapsack problems.	-	8	15
IV	Classical of Multivarial	optimization techniques: Single variable optimization ble optimization with no constraints; Optimization lity constraints; Method of Lagrange Multiplie on with inequality constraints; Kuhn-Tuck	on ers,	8	15
		s for unconstrained optimization - Fibonacci sear	. 1		

directions, Penalty function methods.		I
Introduction to heuristic methods: Meta-heuristics, Needs and applications, Genetic Algorithm- steps of GA- Application problems.	8	20
	applications, Genetic Algorithm- steps of GA- Application	applications, Genetic Algorithm- steps of GA- Application 8 problems.

Course No.	Course Name	L-T-P: Credits	Year of Introduction				
10ME6515	MATERIALS AND INSTRUMENTATION FOR ENERGY SYSTEMS	3-0-0:3	2020				
Course Prerequisite: Basic knowledge of instrumentation and system measurement at the UG level							
Course Objecti							
	the fundamentals of nanostructures and nanomaterials.						
	ice the application of nanostructures and nanomaterials	in solar ene	rgy conversion				
	id systems.		8,				
	t the use of nanomaterials in the fuel cell, hydrogen	n and biof	uel production				
technolog	ies						
	tand the basic principles of instrumentation and working	g of various	measuring				
	r energy systems.						
Syllabus:			C 1 11				
	d Properties of Nanomaterials, Solar Cells, Carbon Mat	erials, Micr	o-fuel cell				
technologies,	neasurements, Open and closed-loop control systems,	Femneratur	a Magguramant				
Energy measure		emperatur	e measurement,				
Expected Outco							
-	of the course, the student will be able to						
-	dge of the nanostructures and nanomaterials and their p	roperties.					
	describe the usage of nanomaterials in energy storage an	-	on & fuel cell				
3. Suggest mea	surement techniques useful for the evaluation of Energy	Conservati	ion Schemes				
References							
	nez J., Nanotechnology for Energy Challenge, Wiley-V						
2. Hari Singh N USA, 2009.	Valwa, Nanomaterials for Energy Storage Applications, I	Nanomax T	echnologies,				
3. Martin A G	reen, Solar cells: Operating principles, technology and	l system ap	plications,				
	Inc, Englewood Cliffs, NJ, USA, 1981.						
	el cell technology handbook, CRC Press, 2003.		1				
	is and Reza Langari, Measurements and Instrumentation	n - Theory	and				
1	Elsevier Inc, 2012.	and Instant	montotion				
Dhanpat Rai	Puneet Sawney: A course in Mechanical Measurements		nentation.				
-	a Co 2002. nson, Process Control Instrumentation Technology, PHI	Learning	Private Limited				
2011.		-					
8. Doblin E.O, 1 1978.	Measurement System Application and Design, Second E	Edition, Mc	Graw Hill,				
9. Nakra, B.C.,	Choudhry K.K., Instrumentation, Measurements and Ar	alysis, Tata	a McGraw Hill,				
	2 nd Edition, 2003. G., Marangoni, R. D. and Lienhard, J. H., Mechanical 1	measureme	nts, Pearson				
Education, 2	001						
	Course Plan						
Module	Contents	Contr hour	Exam				

Ι	Classification and Properties of Nanomaterials - Nano, micro, and polycrystalline and amorphous Si for solar cells, Nano- micro Si-composite structure, various techniques of Si deposition. Nanostructured Materials for High-Efficiency Perovskite Solar Cells, Dielectric Nanomaterials for Silicon Solar Cells, Nanostructured Cathode Buffer Layers for Inverted Polymer Solar Cells - Discotic Liquid Crystals for Self- organizing Photovoltaics.	7	15
II	Carbon Materials- Carbon Nanotubes, Graphene, CNT/Graphene Hybrid, Carbon Fiber, Carbon Grease- Conjugated Polymer- Metal Oxides- Lithium Metal Oxides- Elemental and Compound Semiconductors- Metals. Piezoelectric Nanomaterials- Properties and Synthesis of Piezoelectric Nanomaterials- Energy Harvesting with Piezoelectric Nanomaterials. Nanomaterials for Rechargeable Lithium Batteries- Positive Electrode Materials- Negative Electrode Materials.	7	15
	First Internal Examination		
Ш	 Micro-fuel cell technologies, integration and performance for micro-fuel cell systems -thin film and microfabrication methods design methodologies - micro-fuel cell power sources. Incorporating Graphene into Fuel Cell Design, Mesoporous Materials for Fuel Cells. Nanomaterials for Hydrogen Generation from Solar Water Splitting. Nanomaterials for the Production of Biofuels-Levulinic Acid-Based Fuels-Fuels from Sugar Alcohols-Lignin-Based Fuels. Carbon Cycle- Emissions are Partitioned between the Atmosphere, Land, and Ocean- Methods of CO₂ Capture-Material Used for CO₂ Capture. Introduction to Nanosafety-Measurement-Toxicology. 	8	15
IV	Introduction to measurements, Errors in measurements, Basic electrical measurements, Transducers and its types, Static and dynamic characteristics of transducers, signal conditioning and processing - Measurement of temperature, pressure, velocity, flow rate, thermo-physical and transport properties of solids liquids and gases, Radiation properties of surfaces, Vibration and noise - Computer-assisted data acquisition, Data manipulation and data presentation Second Internal Examination	6	15
	Introduction, Open and closed-loop control systems, Transfer		
V	function. Types of feedback and feedback control systems, fransfer function. Types of feedback and feedback control system characteristics – Effect of disturbances – Dynamic characteristics Process characteristics, Control system parameters – DC and AC servo motors, servo amplifier, potentiometer, synchro transmitters, synchro receivers, synchro control transformer, stepper motors - continuous, discontinuous and composite control modes – Analog and Digital controllers.	6	20
VI	Designing of temperature, pressure, flow and liquid level measurement and control system – Performance – Steady state accuracy – Transient response – Frequency response – Fault finding – Computer-based controls. Temperature Measurement - Biomaterials, Pressure thermometers, Thermocouples, RTD, Thermisters, and	9	20

Pyrometry, pyrometers- Calibration of Pressure measuring	
equipment. Flow Measurement- Variable head flow meters-	
Rotameters, Electromagnetic flow meters, Hotwire	
anemometers, Hot film transducers, Ultrasonic flow meters.	
Moving Iron/coil, Energy measurement, power factor meter-	
Analog signal conditioning, Amplifiers, Instrumentation	
amplifier, A/D and D/A converters, Digital data processing and	
display, Computer data processing and control, Feedback control	
system, Stability and transient analysis of control systems,	
Application of PID controllers, General purpose control devices	
and controller design	
Cluster Level End Semester Examination	

Course No.	Course Name	L-T-P: Credits	Year of Introduction
10ME6517	FLUID DYNAMICS AND HEAT TRANSFER	3-0-0: 3	2020
Course Prereq			
at the UG level	st have basic knowledge of the fundamentals of Fluid	Mechanics an	d Heat Transfe
Course Object	NOC		
To enable the st			
	concept of Fluid Flow fundamentals		
	nathematical modeling of fluid flow problems with sp	ecial reference	e to laminar an
	boundary layer equations.		
	Flow inside pipes, Pressure losses and pumping powe	er requirements	s in pipes unde
	ind turbulent flow conditions.	i requirement.	, in pipes unde
	model mathematically heat conduction problems.		
	model mathematically near conduction problems.	lems in energy	systems
	adiation Heat Transfer among surfaces.	ienns in energy	systems.
	basics of mass Diffusion and convective mass trans	sfer	
	halogy between Momentum, heat and mass transfer.		
Syllabus	harogy between momentum, near and mass transfer.		
•	of Fluid Mechanics, differential and integral forms, B	oundary-Lave	r Equations of
	ternal Flows, Laminar and Turbulent Flows, Conduc		-
	Introduction to Radiation, Diffusion mass Transfer, C		
	en momentum, heat and mass transfer.		,
Expected Outc			
-	of the course, the student will be able to		
-	e fundamentals of fluid flow		
-	fluid flow in the laminar and turbulent boundary lay	er over a surfa	ce.
	pressure and power losses in pipe flow		
-	nduction heat transfer problems mathematically		
	vection heat transfer problems		
	rinciples of Radiation heat transfer between surfaces		
	e analogy between momentum, heat and mass transfe	er.	
References			
	I.L., Wylie E.B. and Bedford, K.W., Fluid Mechanic	s, 9 th Edition, V	WCB McGraw
2. Frank M.	White, Fluid Mechanics (S I Units), 8 th Edition, McC	Fraw Hill Educ	ation, 2016.
3. Pijush K.	Kundu, Ira M Cohen, Fluid Mechanics, 4 th Edition, A	Academic Press	
	Shames, Mechanics of Fluids, 3 rd Edition, McGraw H		
	L. Bergman, Adrienne S. Lavine, Frank P. Incropera	·	Vitt,
	ntals of Heat and Mass Transfer, 8 th Edition, Wiley, 2		
	tidar, P. S., Heat Transfer, Oxford University Press, 2		
Education	naleshwar , Fundamentals of Heat and Mass Transfer India, 2009.		Pearson
8. Holman. J	. P., Heat Transfer, 9 th Edition, Tata McGraw Hill, 24	002.	
9. Ozisik M.	N., Heat Transfer - A Basic Approach, McGraw Hil	l Co., 1985.	
	Course plan		

Module	Content	Hours	Semester Exam Marks (%)
Ι	Introduction to Fluid Mechanics – continuum concept, Ideal flow vs. viscous flow, Rotational and Irrotational flows – circulation – vorticity – stream and potential functions. Newtonian fluid. Continuity, momentum and Energy Equations in differential form and Integral form.	6	15
II	Velocity Boundary Layer – Prandtl's Boundary Layer approximations, External flow Boundary Layer, Boundary- Layer over flat plate, Laminar and Turbulent Boundary Layers, Reynolds Number, Boundary-Layer equations - Continuity, Momentum and Energy Equations. Integral Forms of B L Equations, Solutions to B L equations. Coefficient of Friction, Drag Force, Calculation of Drag Force. Turbulent Flow Boundary Layer, Three Layer model, Boundary-Layer Equations for Turbulent Flow over Flat Plate.	8	15
	First Internal Examination		
Ш	Internal Flow - Laminar flow between parallel plates and in circular pipes – Entry flow, fully developed laminar flow, Poisseuille flow, Couette flow, flow through circular pipes – friction factor – smooth and rough pipes – Moody diagram – losses during flow through pipes. Pipes in series and parallel – transmission of power through pipes.	6	15
IV	Introduction to heat transfer – Modes of heat transfer, General heat conduction equation, one, two and three-dimensional equations, steady-state problems with and without heat generation, boundary conditions in heat conduction problems, Unsteady conduction - Lumped heat capacity heat transfer analysis, Unsteady problem – semi-infinite body.	7	15
	Second Internal Examination		
v	Convection Heat Transfer, Forced and Natural convection, Forced Convection Thermal Boundary Layer over a flat plate, Prandtl Number, Energy Equation for Forced convection, Integral form of Boundary Layer Equation, Nusselt Number, Forced convection in Turbulent Flow, Forced convection in pipes. Governing equations in Natural convection, Natural convection velocity and thermal Boundary layers from a vertical surface, Grashoff Number, Rayleigh number, Modified Grashoff Number.	8	20
VI	Radiation Heat Transfer – Preliminary concepts and laws of Radiation – absorptivity, reflectivity, transmissivity, emissivity, mono-chromatic and total radiative properties, Steffan – Boltzmann law, Radiation Intensity, Emissive Power, Radiation Exchange between surfaces. Introduction to mass diffusion-Fick's law of diffusion, Convective mass transfer, concentration Boundary layer, Boundary-Layer equations of convective mass transfer, Schmidt number, Lewis number, Sherwood number. The analogy between fluid flow and heat transfer and mass transfer - Reynolds analogy. Colburn – Chilton analogy.	8	20

Cours	se No.	Course Name		Γ-P: edits	Year of Introduction
10ME	6519	ENERGY FORECASTING AND MODELLING	3-0	-0:3	2020
Course	_				
		nematical knowledge in UG level			
Course	•	udents to			
		the role of energy in economic development and social t	ransfo	rmation	
	•	asting models and optimization models for energy plan		mation	
		iting project proposals and making project cost estimat	0		
	-	he limit cost of energy for various renewable energy sy		5.	
		arious national and state-level energy issues and differe			cies.
Syllabu					
		in economic development and social transformation, fo	recast	ing tech	niques, multi
		zation, Energy Optimization Model, National & State I			
Expecte	-				
		ompletion of the course, the student will be able to			
1. Id	lentify th	ne present state and future promise of energy sources, d	leman	d and co	nsumption
g	lobally				
	-	n Energy prediction using various forecasting technique	ies		
		t optimization model for energy planning			
	•	ational and state energy policies.			
		ergy-related detailed project report including cost estin	nation		
Referen					
		g J. Scott, Principles of forecasting: A handbook for re	search	ners and	practitioners,
		Massachusetts, Kluwer Academic Publishers, 2001	T1 IC	TTATT.	
	папаара)06.	ni Alagiri, Energy Security in India Current Scenario,	The IC	FAI UN	iversity Press,
3. Fr	ed Luth	ans, Organisational Behaviour, An evidence-based app Edition, 2011	roach	McGrav	v Hill, lnc,
4. S.	Makrid	akis, Forecasting Methods and applications, Wiley, 3rd	Editi	on,1997	
		er Kaur Multani, Energy Security in Asia Current Scen			AI University
Pr	ess				-
6. Y	ang X.S	., Introduction to mathematical optimization: From line	ear pro	grammi	ng to
		stics, Cambridge, International Science Publishing, 20			
		ameron, Xiaoyi Mu, Volker Roeben., The Global Energy			
		omics for Energy in the 21 st Century (Global Energy La		d Policy)	
8. N	awneeth	Vibhaw, Energy Law and Policy in India, 8 th Edition,	2014	_	
		Course plan			
					Semester
Module		Content		Hours	Exam
					Marks
					(%)
			ocial		
		mation: Energy & GDP, GNP and its dynamics - Energy			
		s and Overall Energy demand and Availability - Energy	<u> </u>	7	15
Ι		nption in various sectors and its changing pattern - St		,	1.5
		lear and Renewable Energy: Present Status and fu	lure		
	promise	20			1
		20			

II	Forecasting Techniques - Regression Analysis - Double Moving Average - Double Experimental Smoothing - Triple Exponential Smoothing - ARIMA model-Validation techniques-Qualitative forecasting -Delphi technique - Concept of Neural Net Works	7	15		
	First Internal Examination				
III	Principles of Optimization - Formulation of Objective Function - Constraints - Multi-Objective Optimization – Mathematical Optimization Software.	7	15		
IV	Development of Energy Optimization Model - Development of Scenarios – Sensitivity Analysis - Concept of Fuzzy Logic.	7	15		
	Second Internal Examination				
V	Project Preparation – Feasibility Study – Detailed Project Report - Project Appraisal – Social-cost benefit Analysis - Project Cost Estimation – Project Risk Analysis - Project Financing – Financial Evaluation.	7	20		
VI	National & State Level Energy Issues - National & State Energy Policy - Energy Security - National solar mission - state solar energy policy - Framework of Central Electricity Authority (CEA), Central & States Electricity Regulatory Commissions (CERC & ERCs).	7	20		
Cluster Level End Semester Examination					

Course No.	Course Name	L - T - P - Credits	Year of Introduction
10GN6001	RESEARCH METHODOLOGY	0-2-0:2	2015
Course Prerequ		0 2 0.2	-010
-	till of analyzing data earned through the project work a	t UG level:	
	ledge in technical writing and communication skills ear		eminar at the
UG level.	6		
Course Objectiv	ves		
1. To understa	and the methodology of doing research.		
1	skills related to professional communication and techn	1	0
	pe course, this course is expected to be more learner-ce		e involvement
	ers is expected which encourages self-study and group	discussions.	
-	ainly performs a facilitator's role		
Syllabus			
	earch methodology - research process - scientific m		
-	n design process - formulation of the research task, l		
	-solving approaches - experimental research - ex post		
	esentation - interpretation and report writing - principl		
	esentation - seminars and conferences, Research proper ethics - considerations in publishing, citation, plagia		
	methods – modeling and simulation - mathematical		
	mulation modeling - measurement design – validity –		
	ection methods and data analysis.	i chiao hity s	sumple
Expected Outco			
The students are			
	d for research through the attainment of a perspective of	of research met	hodology.
	d evaluate research works and formulate a research pro-		
3. Develop ski	lls related to professional communication, technical rep	port writing and	l publishing
papers.			
References	nai Desearch Mathadala an Mathada & Tashuisuan N	Larry A and Tradarma	at an al
Publisher	nari, Research Methodology: Methods & Techniques, N	New Age Interna	ational
	erselvam, Research Methodology, Prentice Hall of Indi	ia. New Delhi '	2012
	ishnaswamy, Appa Iyer Sivakumar, and M. Mathirajan		
	logy, Integration of Principles, Pearson Education.	, management	leseuren
	Chawla, and Meena Sondhi, Research Methodology – C	Concepts & Cas	es. Vikas
Publishin			
	nes, Statistical Analysis for Engineers and Scientists, M	IcGraw Hill, No	ew York.
6. Schank F	r., Theories of Engineering Experiments, Tata McGrav	v Hill Publication	on.
	on K. L, Bhandarkar P. L, Formulation of Hypothesis,		
	C Montgomery, Design and analysis of experiments, W		
9. Ranjit Ku Education	umar, Research Methodology: A step by step guide for n.	beginners, Pear	son
10. Donald C	Cooper, Business Research Methods, Tata McGraw Hill	l, New Delhi.	
•	D, Practical Research: Planning and Design, 4th Editio	n, N W MacMi	llan Publishing
Co			
12. Day R A	, How to Write and Publish a Scientific Paper, Cambrid	lge University l	Press, 1989

- 12. Day R A, How to Write and Publish a Scientific Paper, Cambridge University Press, 1989
- 13. Coley S M and Scheinberg C A, Proposal Writing, 1990, Newbury Sage Publications.
- 14. Sople, Managing Intellectual Property: The Strategic Imperative, Prentice Hall of India, New Delhi, 2012

- 15. Manna, Chakraborti, Values and Ethics in Business Profession, Prentice Hall of India, New Delhi, 2012.
- 16. Vesilind, Engineering, Ethics and the Environment, Cambridge University Press.
- 17. Wadehra, B.L. Law relating to patents, trademarks, copyright designs and geographical indications, Universal Law Publishing.

Course plan				
Module	Content	Hours	Semester Exam Marks (%)	
Ι	Overview of Research Methodology: Research concepts, meaning, objectives, motivation, types of research, research process, criteria for good research, problems encountered by Indian researchers, scientific method, research design process.	5	15	
П	Research Problem and Design: Formulation of the research task, literature review, methods, primary and secondary sources, web as a source, browsing tools, formulation of research problems, exploration, hypothesis generation, problem-solving approaches, introduction to TRIZ (TIPS), experimental research, principles, laboratory experiment, experimental designs, ex post facto research, qualitative research.	5	15	
	First Internal Examination			
III	Thesis Writing, Reporting and Presentation: Interpretation and report writing, techniques of interpretation, precautions in interpretation, the significance of report writing, principles of thesis writing, the format of reporting, different steps in report writing, layout and mechanics of research report, references, tables, figures, conclusions, oral presentation, preparation, making a presentation, use of visual aids, effective communication, preparation for presentation in seminars and conferences.		15	
IV	Research proposals, Publications, Ethics and IPR: Research proposals, development and evaluation, research paper writing, the layout of a research paper, journals in engineering, considerations in publishing, scientometry, impact factor, other indexing like h-index, citations, open access publication, ethical issues, plagiarism, software for plagiarism checking, intellectual property right (IPR), patenting, case studies.	5	15	
	Second Internal Examination			
V	Research Methods - Modeling and Simulation: Modeling and simulation, concepts of modeling, mathematical modeling, composite modeling, modeling with ordinary differential equations, partial differential equations (PDE), graphs, heuristics and heuristic optimization, simulation modeling.	5	20	
VI	Research Methods - Measurement, Sampling and Data Acquisition: Measurement design, errors, validity and reliability in measurement, scaling and scale construction, sample design, sample size determination, sampling errors, data collection procedures, sources of data, data collection methods, data preparation and data analysis. Cluster Level End Semester Examination		20	
Cluster Level End Semester Examination				

Course	No. Course Name	L-T-P: Credits	Year of Introduction			
10ME6	509 SEMINAR I	0- 0-2: 2	2020			
1. The 2. Bas UG	Prerequisites habit of reading technical magazines, conference proceed ic knowledge in technical writing and communication skill level.					
To enab 1. En 2. Fir	Objectives le the students to hance the ability to conduct a literature review for the proj id a proper area of research for the M. Tech thesis. velop the skills of professional communication and technic					
specializ on curres the end Grades v common for prepa	ent shall prepare a paper and present a seminar on any cu ation under the guidance of a staff member. The student we ntly published papers, journals, books on the chosen sub- of the semester. The student shall submit a printed cop- vill be awarded based on the contents of the paper and format, preferably the IEEE format, (in PDF/MS Word/ aring the report. All such reports submitted by the studen	vill undertake a d ject and submit a by of the paper t the quality of t LaTeX) shall be	etailed study based a seminar report at o the Department. he presentation. A given for students			
On succ 1. Pr 2. Id	d Outcomes essful completion of the course, the student will be able to epare the literature review required for doing project work entify a suitable area of research for the M. Tech thesis.	•	iting.			
 Demonstrate the skills of professional communication and technical report writing. References M. Ashraf Rizvi, Effective Technical Communication, Tata Mc Graw Hill Education, New Delhi, Second Edition, 2017. Day R.A., How to Write and Publish a Scientific Paper, Greenwood Press, Seventh Edition, 2011. 						
3. Coley S M and Scheinberg C. A., Proposal Writing, Sage Publications, Second edition, 2000. Course plan						
Item	Description		Time			
1	Abstract Submission		3 Weeks			
1 2	Abstract Submission Allotment of Topic and Scheduling Seminars		3 Weeks 2 Weeks			
1	Abstract Submission		3 Weeks			

Course No.	e Course Name	L-T-P: Credits	Year of Introduction
10ME65	511 ENERGY SYSTEMS LAB	0-0-2:1	2020
Course P	Prerequisites	L	
	nowledge of Mechanical/Electrical/Chemical Enginee	ering at UG level	
Course C	Dbjectives		
	e the students to		
	nderstand various energy systems by physically opera		
	e able to set the operating parameters with physical se	nse to conduct expe	riments on various
	nergy systems within the safe limit.	1 '1',	
	e capable of generating experimental data with repeat		nnlying the
	e able to analyse the performance of various energy sy ermodynamic, fluid flow and heat transfer principles		
	I Outcomes	illey gailleu ill ule u	leory courses.
	ssful completion of the course, the student will be able	e to	
	iscuss the functions and operations of various compo		me
	lustrate parametric setting for the experimentation in v		
	se the knowledge gained in outcome 2 to conduct exp		
	tisfactory level of confidence, within the constraints of		
	leasurement devices.	F	j
4. Ra	ate the performance of different energy systems by an	alysing the data bas	ed on theoretical
	nowledge.		
List of Ex	xperiments		
1. E	Experimental study of the performance of solar water	heaters.	
	Characteristics study of solar photovoltaic devices.		
	Performance study of the biogas plant.		
4. F	Fuel characterization study in different fuels (proximation	te analysis, calorific	value, viscosity,
	specific gravity etc.,)		
	Measurements of direct and diffused solar radiation.		
	Performance study on the boiler.		
	Performance characteristics of the motor test rig.		
	Computation of pump & pumping system characteristi	cs (pump curve, sys	stem curve and
	BEP)		
	Experimental analysis on the performance of vapour c		litioning system.
	Experimental analysis of the performance of downdraf		а н (
11. E	Experimental Investigation of the performance of Vari	able compression I	Engine

Course No.	Course Name	L-T-P: Credits	Year of Introduction				
10ME65	02 SOLAR ENERGY SYSTEMS	3-1-0:4	2020				
Course Prerequisites							
	wledge in thermodynamics, fluid mechanics and heat	transfer					
Course O							
	the students to	atom					
-	uire analytical skills about various solar thermal colle lerstand the concepts of various solar thermal energy of		ms				
	lerstand the principle and working of Photo Voltaic er	•					
	lerstand the utilization of solar energy for thermal con		•				
Syllabus							
	ation, different types of solar collectors, heat transfer						
-	f solar power plants, Solar photovoltaics, PV system of	design, power el	ectric circuits for				
-	solar panels, Thermal comfort.						
-	Outcomes						
	sful completion of the course, the student will be able						
	lyse the performance of various solar thermal collecto prehend the concepts of various solar thermal energy		ems				
	gn solar photovoltaic energy conversion and transmis	•					
	uss the utilization of solar energy for thermal comfort						
Reference	8						
	wami D.Y., Kreider, J. F., Francis., Principles of Sola	r Engineering, 3	rd Edition, CRC				
	ss, 2015.	0 0					
	tan Singh Solanki, Solar Photovoltaics – Fundamenta	ls, Technologies	and Applications,				
	Learning Private Limited.	The sum of C all a s	(
	hatme S.P., Nayak. J.P., Solar Energy – Principle of McGraw Hill,2008.	I nermal Collect	tion and Storage,				
	er A. Messenger, Amir Abtahi, Photovoltaic Systems	s Engineering.4 th	¹ Edition. CRC				
	s,2017	6 6	,				
	g H. P. and Prakash J., Solar Energy – Fundamentals a	and Applications	s, Tata McGraw-				
Hill	, 2016						
	Course Plan		Semester				
Module	Content	Hour					
litouule	Content		(%)				
5	Solar radiation, components and spectral dist	ribution;					
]	Radiation instruments and radiation measurements.						
]	Flat plate collector thermal analysis - testing n	nethods-					
	evacuated tubular collectors –Sun tracking conce		15				
	collectors: classification, design and performance para racking systems, compound parabolic conce						
	parabolic trough concentrators, concentrators wit						
	ocus, Fresnel collectors, Heliostats.	1 ·					

Π	Heat transfer fluids for solar collectors, Emerging technologies in solar concentrators Solar thermal power generation schemes: Central receiver power plants (solar power towers) - solar chimney power plants - Dish sterling systems - solar ponds - thermal analysis of solar power plants.	8	15
	First Internal Examination		
III	Semiconductor – properties - energy levels - basic equations of semiconductor devices physics. Solar cells - p-n junction: homo and heterojunctions - metal-semiconductor interface - characteristics - the figure of merits of solar cell - efficiency limits - a variation of efficiency with band-gap and temperature - efficiency measurements - high-efficiency cells – Solar thermo-photovoltaics.	8	15
IV	 Solar cell array system analysis and performance prediction- Shadow analysis: reliability - solar cell array design concepts PV system design - design process and optimization - detailed array design - storage autonomy - maximum tracking centralized and decentralized SPV systems - standalone - hybrid and grid-connected system. 	8	15
	Second Internal Examination		
V	 Power electric circuits for output of solar panels: Choppers, inverters, batteries, charge regulators. System installation - operation and maintenances - field experience - PV market analysis and economics of solar power systems. 	8	20
VI	Thermal comfort - bioclimatic classification – passive heating concepts: direct heat gain - indirect heat gain - isolated gain and sunspaces - passive cooling concepts: evaporative cooling - Radiative cooling - application of wind, water and earth for cooling; shading - paints and cavity walls for cooling - roof radiation traps - earth air-tunnel. – energy-efficient landscape design - thermal comfort.	8	20

Course Name L-T-P: Credits Year of Introduction 10ME6504 THERMAL ENERGY CONSERVATION TECHNIQUES 3-0-0 : 3 2020 Course Prerequisites Basic knowledge of thermodynamics and heat transfer 3-0-0 : 3 2020 Course Optimies To enable the students to 1 1 1. Learn the present energy scenario and the need for energy conservation 1 1 1 2. Study the different measures for energy conservation and financial implications of various thermal utilities 3 1 1 3. Understand the energy crisis and environmental concerns associated with energy management, and the importance of energy conservation. 4 Apply energy conservation techniques in thermal systems Syllabus Basics of Energy and its various forms - Salient Features - Schemes of Bureau of Energy Efficiency (BEE)- Energy conservation in boilers- Cogeneration Principles & Operation- Energy conservation in refrigeration and air conditioning systems- Energy conservation in Compressors, firmaces and heat exchanger-Case study of energy conservation. Nemagement and Case study. Hemisphere, Washington, 1980. 1. Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. 1 Hamidow on Energy Efficiency, TERI, New Delhi, 2001. 4. Trived P.R., Julka K.R., Energy Management and Utilization; Hemisphere Publishers, 1988. Eastop T. D. and Croft D. R., Energy Efficiency (BEE)					D	17
IDMEDSOID TECHNIQUES 3-0-0:3 2020 Course Prerequisites Basic knowledge of thermodynamics and heat transfer Course Objectives To enable the students to 1. Learn the present energy scenario and the need for energy conservation 2. Study the different measures for energy conservation and financial implications of various thermal utilities 3. Understand the energy crisis and environmental concerns associated with energy management, and the importance of energy conservation, 4. Apply energy conservation techniques in thermal systems Syllabus Basics of Energy and its various forms- Salient Features - Schemes of Bureau of Energy Efficiency (BEE)- Energy audit, definition, need, types of the energy audit. Energy management (audit) approach- Energy conservation in boilers- Cogeneration - Principles & Operation- Energy conservation in boilers- Cogeneration - Principles & Operation- Energy conservation in compressors, furnaces and heat exchangers-Case study of energy conservation. References 1. Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. 1. Handbook on Energy Efficiency, TERI, New Delhi, 2001. 4. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation, Pergamon Press, 1979. 7. White L. C., Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. 8. Eastop T. D. and Croft			Course Name			
Basic knowledge of thermodynamics and heat transfer Course Objectives To enable the students to 1. Learn the present energy scenario and the need for energy conservation 2. Study the different measures for energy conservation and financial implications of various thermal utilities 3. Understand the energy crisis and environmental concerns associated with energy management, and the importance of energy conservation techniques in thermal systems Syllabus Basics of Energy and its various forms- Salient Features - Schemes of Bureau of Energy Efficiency (BEE) - Energy audit, definition, need, types of the energy audit. Energy management (audit) approach. Energy conservation in boilers- Cogeneration – Principles & Operation - Energy conservation in refrigeration and air conditioning systems- Energy conservation in Compressors, furnaces and heat exchangers-Case study of energy conservation. References 1. Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. 2. Hamides, Energy Auditing and Conservation; Methods, Measurements, Management and Case study, Hemisphere, Washington, 1980. 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001. 4. Trivedi P.R., Julka K.R., Energy Management and Utilization; Hermisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988.	10ME6	5504		3-0-0	:3	2020
Course Objectives To enable the students to 1. Learn the present energy scenario and the need for energy conservation 2. Study the different measures for energy conservation and financial implications of various thermal utilities 3. Understand the energy crisis and environmental concerns associated with energy management, and the importance of energy conservation in thermal systems Syllabus Basics of Energy and its various forms- Salient Features - Schemes of Bureau of Energy Efficiency (BEE) - Energy audit, definition, need, types of the energy audit. Energy management (audit) approach. Energy conservation in boilers- Cogeneration – Principles & Operation - Energy conservation in eoliters- Cogeneration – Principles & Operation - Energy conservation in compressors, furnaces and heat exchangers-Case study of energy conservation. References 1. Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. 2. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management and Case study. Hemisphere, Washington, 1980. 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001. 4. Trived P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation – a ready reckoner on energy conservation measures; Petroleum Conservation Research Association, 2009. 6. Reay D. Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. 8. Eas	Course P	rerequ	isites			
To enable the students to 1. Learn the present energy scenario and the need for energy conservation 2. Study the different measures for energy conservation and financial implications of various thermal utilities 3. Understand the energy crisis and environmental concerns associated with energy management, and the importance of energy conservation, 4. Apply energy conservation techniques in thermal systems Sylabus Basics of Energy and its various forms- Salient Features - Schemes of Bureau of Energy Efficiency (BEE) - Energy audit, definition, need, types of the energy audit. Energy management (audit) approach. Energy conservation in boilers- Cogeneration – Principles & Operation - Energy conservation in refrigeration and air conditioning systems- Energy conservation in Compressors, furnaces and heat exchangers-Case study of energy conservation. References 1. Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. 2. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management and Case study, Hemisphere, Washington, 1980. 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001. 4. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation, Pergamon Press, 1979. 7. White L. C., Industrial Energy Management and Ulilization; Hemisphere Publishers, 1988. Eastor T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to 1. Execute thermal energy auditig. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems 4. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems 4. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems 4. Discuss financial aspects as far as Energy Conservation Acts - Salient Features and environmental concerns. Pr	Basic kno	wledge	e of thermodynamics and heat transfer			
1. Learn the present energy scenario and the need for energy conservation 2. Study the different measures for energy conservation and financial implications of various thermal utilities 3. Understand the energy crisis and environmental concerns associated with energy management, and the importance of energy conservation, 4. Apply energy conservation techniques in thermal systems Syllabus Basics of Energy and its various forms- Salient Features - Schemes of Bureau of Energy Efficiency (BEE)- Energy andit, definition, need, types of the energy conservation in Compressors, furnaces and heat exchangers-Case study of energy conservation. References 1. Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. 2. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management and Case study, Hemisphere, Washington, 1980. 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001. 4. Trived IP.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation – a ready reckoner on energy conservation measures; Petroleum Conservation Research Association, 2009. 6. Reay D. Industrial energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. 7. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems 9. Discuss financial aspects as far as Energy Conservation						
 Study the different measures for energy conservation and financial implications of various thermal utilities Understand the energy crisis and environmental concerns associated with energy management, and the importance of energy conservation, Apply energy conservation techniques in thermal systems Syllabus Basics of Energy and its various forms- Salient Features - Schemes of Bureau of Energy Efficiency (BEE) - Energy audit, definition, need, types of the energy audit. Energy management (audit) approach. Energy conservation in boilers- Cogeneration – Principles & Operation - Energy conservation in refrigeration and air conditioning systems- Energy conservation in Compressors, furnaces and heat exchangers-Case study of energy conservation. References Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management and Case study, Hemisphere, Washington, 1980. Handbook on Energy Efficiency, TERI, New Delhi, 2001. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 Practical guide to energy conservation – a ready reckoner on energy conservation measures; Petroleum Conservation Research Association, 2009. Reay D. Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. Execute thermal energy auditing. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems Discuss the most used energy planning and management systems Discuss the most used energy planning and management systems Discuss the most used energy planning and management systems inclenergy futensive Industries, Barriers, Energy Conservation Act	To enable	e the stu	idents to			
thermal utilities	1. Lea	arn the j	present energy scenario and the need for energy conse	rvation		
3. Understand the energy crisis and environmental concerns associated with energy management, and the importance of energy conservation, 4. Apply energy conservation techniques in thermal systems Syllabus Basics of Energy and its various forms- Salient Features - Schemes of Bureau of Energy Efficiency (BEE) - Energy conservation in boilers - Cogeneration – Principles & Operation - Energy conservation in refrigeration and air conditioning systems - Energy conservation in Compressors, furnaces and heat exchangers-Case study of energy conservation. References 1. Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. 2. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management and Case study, Hemisphere, Washington, 1980. 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001. 4. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation, Pergamon Press, 1979. 7. White L. C., Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. Cuscessful completion of the course, the student will be able to 1. Execute thermal energy auditing. 2. Discuss the most used energy planning and management systems 4. Discuss the most used energy planning and management systems 9. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems	2. Stu	dy the	different measures for energy conservation and finance	ial impli	ications	of various
and the importance of energy conservation, 4. Apply energy conservation techniques in thermal systems Syllabus Basics of Energy and its various forms- Salient Features - Schemes of Bureau of Energy Efficiency (BEE) - Energy conservation in boilers- Cogeneration – Principles & Operation- Energy conservation in refrigeration and air conditioning systems - Energy conservation in Compressors, furnaces and heat exchangers-Case study of energy conservation. References 1. Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. 2. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management and Case study, Hemisphere, Washington, 1980. 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001. 4. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation, Pergamon Press, 1979. 7. White L. C., Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. 1. Execute thermal energy auditing. 2. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems 2. 4. Apply the scientific knowledge for energy Conservation and management in the thermal energy systems 3. 4. Discuss the most used energy planning and management systems 4. 4. Discuss the nost used energy planning and management systems 3. 4. Dis	the	rmal ut	ilities			
4. Apply energy conservation techniques in thermal systems Syllabus Basics of Energy and its various forms- Salient Features - Schemes of Bureau of Energy Efficiency (BEE)- Energy conservation in boilers- Cogeneration – Principles & Operation - Energy conservation in refrigeration and air conditioning systems- Energy conservation in Compressors, furnaces and heat exchangers-Case study of energy conservation. References 1. Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. 2. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management and Case study, Hemisphere, Washington, 1980. 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001. 4. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation, Pergamon Press, 1979. 7. White L. C., Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency of Engineers and Technologists, Longman-Scientific and Technical Series, 1988. Execute thermal energy auditing. 2. Discuss financial aspects as far as Energy Conservation Schemes are concerned. 3. Apply the scientific knowledge for energy Conservation and management in the thermal energy systems 4. Discuss the most used energy planning and management systems 4. Discuss the most used energy planning and management systems 6. Reagy I conservation and management, Energy Conservation, Energy Intensive Industrie	3. Un	derstan	d the energy crisis and environmental concerns associa	ated wit	h energy	y management,
Syllabus Signatures - Schemes of Bureau of Energy Efficiency (BEE) - Energy and its various forms - Salient Features - Schemes of Bureau of Energy Efficiency (BEE) - Energy conservation in boilers - Cogeneration – Principles & Operation - Energy conservation in the obstance of the energy conservation in Compressors, furnaces and heat exchangers-Case study of energy conservation. References 1 Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. 2. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management and Case study, Hemisphere, Washington, 1980. Nanagement, Commonwealth Publication, New Delhi, 1997 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation - a ready reckoner on energy conservation measures; Petroleum Conservation Rearch Association, 2009. Reay D. Industrial energy conservation, Pergamon Press, 1979. 7. White L. C., Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to 1. 1. Execute thermal energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management systems 4. Discuss the most used energy planning and management systems 8. Basics of Energy and its various forms, Primary/Seconda						
Basics of Energy and its various forms- Salient Features - Schemes of Bureau of Energy Efficiency (BEE)- Energy audit, definition, need, types of the energy audit. Energy management (audit) approach- Energy conservation in boilers- Cogeneration - Principles & Operation- Energy conservation in refrigeration and air conditioning systems- Energy conservation in Compressors, furnaces and heat exchangers-Case study of energy conservation. References 1. Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. 2. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management and Case study, Hemisphere, Washington, 1980. 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001. 4. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation – a ready reckoner on energy conservation measures; Petroleum Conservation Research Association, 2009. 6. Reay D. Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. Expected Outcomes 0n successful completion of the course, the student will be able to 1. Execute thermal energy auditing. 2. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems 4. Discuss the most used energy planning and management systems 4. Discuss the most used energy planning and management systems 7 15	^	ply ene	rgy conservation techniques in thermal systems			
(BEE)- Energy audit, definition, need, types of the energy audit. Energy management (audit) approach - Energy conservation in boilers- Cogeneration – Principles & Operation - Energy conservation in refrigeration and air conditioning systems- Energy conservation in Compressors, furnaces and heat exchangers-Case study of energy conservation. References 1. Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. 2. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management and Case study, Hemisphere, Washington, 1980. 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001. 4. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation – a ready reckoner on energy conservation measures; Petroleum Conservation Research Association, 2009. 6. Reay D. Industrial energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to 1. Execute thermal energy auditing. 2. Discuss the most used energy planning and management systems Course Plan Semester Module Content Basics of Energy and its various forms, Primary/Secondary Ener	Syllabus					
approach Energy conservation in boilers Cogeneration – Principles & Operation - Energy conservation in refrigeration and air conditioning systems - Energy conservation in Compressors, furnaces and heat exchangers-Case study of energy conservation. References 1. Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. 2. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management and Case study, Hemisphere, Washington, 1980. 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001. 4. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation – a ready reckoner on energy conservation measures; Petroleum Conservation Research Association, 2009. 6. Reay D. Industrial energy conservation, Pergamon Press, 1979. 7. White L. C., Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to 1. Execute thermal energy anditing. 2. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems 4. Discuss the most used energy planning and management systems 5. Course Plan Module Content Basics of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Fenergy Intensive Industries, Barriers, Energy Conservation, Fenergy In						•••
conservation in refrigeration and air conditioning systems- Energy conservation in Compressors, furnaces and heat exchangers-Case study of energy conservation. References 1. Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. 2. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management and Case study, Hemisphere, Washington, 1980. 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001. 4. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation – a ready reckoner on energy conservation measures; Petroleum Conservation Research Association, 2009. 6. Reay D. Industrial energy conservation, Pergamon Press, 1979. 7. White L. C., Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to 1. Execute thermal energy auditing. 2. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems 4. Discuss the most used energy planning and management systems Content Semester Exam Marks (%) Module Content Semeste						
furnaces and heat exchangers-Case study of energy conservation. References 1. Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. 2. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management and Case study, Hemisphere, Washington, 1980. 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001. 4. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation – a ready reckoner on energy conservation measures; Petroleum Conservation Research Association, 2009. 6. Reay D. Industrial energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to 1. Execute thermal energy auditing. 2. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems 4. Discuss the most used energy planning and management systems Exam Marks (%) Industria Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Acts - Freqy Intensive Industries, Barriers, Energy Conservation, Acts - Freqy Intensive Industries, Barriera of En						
References 1. Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. 2. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management and Case study, Hemisphere, Washington, 1980. 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001. 4. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation – a ready reckoner on energy conservation measures; Petroleum Conservation Research Association, 2009. 6. Reay D. Industrial energy conservation, Pergamon Press, 1979. 7. White L. C., Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman- Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to 1. Execute thermal energy auditing. 2. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems 4. Discuss the most used energy planning and management systems Kourse Plan Module Content Hours Semester Supervision and management systems 1 Basics of Energy and its various forms,				conserv	vation in	n Compressors,
 Diamant R.M.E., Total Energy, Pergamon, Oxford, 1970. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management and Case study, Hemisphere, Washington, 1980. Handbook on Energy Efficiency, TERI, New Delhi, 2001. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 Practical guide to energy conservation – a ready reckoner on energy conservation measures; Petroleum Conservation Research Association, 2009. Reay D. Industrial energy conservation, Pergamon Press, 1979. White L. C., Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. Eastop T. D. and Croft D. R., Energy Conservation Schemes are concerned. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems Discuss the most used energy planning and management systems Discuss of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Action 4, (%) I energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies, 			exchangers-Case study of energy conservation.			
2. Hamies, Energy Auditing and Conservation; Methods, Measurements, Management and Case study, Hemisphere, Washington, 1980. 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001. 4. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation – a ready reckoner on energy conservation measures; Petroleum Conservation Research Association, 2009. 6. Reay D. Industrial energy conservation, Pergamon Press, 1979. 7. White L. C., Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to 1. Execute thermal energy auditing. 2. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems 4. Discuss the most used energy planning and management systems 4. Discuss the most used energy planning and management systems Semester Hours Semester Hours Surces, Energy crisis and environmental concerns. Principles of energy onservation and management, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies,	Reference	es				
study, Hemisphere, Washington, 1980. 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001. 4. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation – a ready reckoner on energy conservation measures; Petroleum Conservation Research Association, 2009. 6. Reay D. Industrial energy conservation, Pergamon Press, 1979. 7. White L. C., Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman- Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to 1. Execute thermal energy auditing. 2. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems 4. Discuss the most used energy planning and management systems 4. Discuss the most used energy planning and management systems 4. Discuss the most used energy planning and management systems 6. Reargy Conservation and management, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies,				ements	Manage	ement and Case
 Handbook on Energy Efficiency, TERI, New Delhi, 2001. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 Practical guide to energy conservation – a ready reckoner on energy conservation measures; Petroleum Conservation Research Association, 2009. Reay D. Industrial energy Management and Utilization; Hemisphere Publishers, 1988. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman- Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to Execute thermal energy auditing. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems Discuss the most used energy planning and management systems Module Basics of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies, 				ements,	Manage	chieft and Case
 4. Trivedi P.R., Julka K.R., Energy Management, Commonwealth Publication, New Delhi, 1997 5. Practical guide to energy conservation – a ready reckoner on energy conservation measures; Petroleum Conservation Research Association, 2009. 6. Reay D. Industrial energy conservation, Pergamon Press, 1979. 7. White L. C., Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to Execute thermal energy auditing. Discuss financial aspects as far as Energy Conservation and management in the thermal energy systems Joiscuss the most used energy planning and management systems Module Content Hours Flamma Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation, Energy Intensive Industries, State Designated Agencies, Including Designated consumers, State Des		•				
 5. Practical guide to energy conservation – a ready reckoner on energy conservation measures; Petroleum Conservation Research Association, 2009. 6. Reay D. Industrial energy conservation, Pergamon Press, 1979. 7. White L. C., Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to Execute thermal energy auditing. Discuss financial aspects as far as Energy Conservation Schemes are concerned. Apply the scientific knowledge for energy conservation and management in the thermal energy systems Discuss the most used energy planning and management systems Module Content Basics of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation, Ats - 7 Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies, 				Publicat	tion Ne	w Delhi 1997
Petroleum Conservation Research Association, 2009. 6. Reay D. Industrial energy conservation, Pergamon Press, 1979. 7. White L. C., Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman- Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to 1. Execute thermal energy auditing. 2. Discuss financial aspects as far as Energy Conservation Schemes are concerned. 3. Apply the scientific knowledge for energy conservation and management in the thermal energy systems 4. Discuss the most used energy planning and management systems 4. Discuss of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies, 7 15						
 6. Reay D. Industrial energy conservation, Pergamon Press, 1979. 7. White L. C., Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman- Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to Execute thermal energy auditing. Discuss financial aspects as far as Energy Conservation Schemes are concerned. Apply the scientific knowledge for energy conservation and management in the thermal energy systems Discuss the most used energy planning and management systems Module Content Hours Semester Exam Marks (%) Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies, 				energy		ation measures,
 7. White L. C., Industrial Energy Management and Utilization; Hemisphere Publishers, 1988. 8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman-Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to 1. Execute thermal energy auditing. 2. Discuss financial aspects as far as Energy Conservation Schemes are concerned. 3. Apply the scientific knowledge for energy conservation and management in the thermal energy systems 4. Discuss the most used energy planning and management systems Module Content Hours Semester Exam Marks (%) I Basics of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies, 						
8. Eastop T. D. and Croft D. R., Energy Efficiency for Engineers and Technologists, Longman- Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to 1. Execute thermal energy auditing. 2. Discuss financial aspects as far as Energy Conservation Schemes are concerned. 3. Apply the scientific knowledge for energy conservation and management in the thermal energy systems 4. Discuss the most used energy planning and management systems 4. Discuss the most used energy planning and management systems Course Plan Semester Kontent Basics of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies, 7 15 				nispher	e Publis	hers 1988
Scientific and Technical Series, 1988. Expected Outcomes On successful completion of the course, the student will be able to 1. Execute thermal energy auditing. 2. Discuss financial aspects as far as Energy Conservation Schemes are concerned. 3. Apply the scientific knowledge for energy conservation and management in the thermal energy systems 4. Discuss the most used energy planning and management systems Course Plan Module Semester Residence of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies, 7 15						
Expected Outcomes On successful completion of the course, the student will be able to 1. Execute thermal energy auditing. 2. Discuss financial aspects as far as Energy Conservation Schemes are concerned. 3. Apply the scientific knowledge for energy conservation and management in the thermal energy systems 4. Discuss the most used energy planning and management systems 4. Discuss the most used energy planning and management systems Module Semester Module Semester		-				sists, Longinan
On successful completion of the course, the student will be able to 1. Execute thermal energy auditing. 2. Discuss financial aspects as far as Energy Conservation Schemes are concerned. 3. Apply the scientific knowledge for energy conservation and management in the thermal energy systems 4. Discuss the most used energy planning and management systems 4. Discuss the most used energy planning and management systems Course Plan Module Semester Exam Marks (%) I Basics of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies, 7 15			· · · · · · · · · · · · · · · · · · ·			
 Execute thermal energy auditing. Discuss financial aspects as far as Energy Conservation Schemes are concerned. Apply the scientific knowledge for energy conservation and management in the thermal energy systems Discuss the most used energy planning and management systems Discuss the most used energy planning and management systems Course Plan Module Basics of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies, 	-					
 2. Discuss financial aspects as far as Energy Conservation Schemes are concerned. 3. Apply the scientific knowledge for energy conservation and management in the thermal energy systems 4. Discuss the most used energy planning and management systems 4. Discuss the most used energy planning and management systems Course Plan Module Remester Basics of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies, 						
3. Apply the scientific knowledge for energy conservation and management in the thermal energy systems 4. Discuss the most used energy planning and management systems Course Plan Module Remester Basics of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies, 7 15				s are co	ncerned	
Systems 4. Discuss the most used energy planning and management systems Course Plan Module Remester Basics of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies, 7 15						
4. Discuss the most used energy planning and management systems Course Plan Module Formation in the system in th						increase and gr
Course PlanModuleContentHoursSemester Exam Marks (%)IBasics of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies,715	•		e most used energy planning and management system	S		
ModuleHoursExamMarks (%)IBasics of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies,74						
ModuleHoursExamMarks (%)IBasics of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies,74						Semester
IBasics of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies,(%)	Module		Content		Hours	
Basics of Energy and its various forms, Primary/Secondary Energy Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies,1	inouule		Content			
Sources, Energy crisis and environmental concerns. Principles of energy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies,715		D. '		7		
Ienergy conservation and management, Energy Conservation, Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies,715						
Energy Intensive Industries, Barriers, Energy Conservation Acts - Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies,715			•••	-		
Salient Features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, State Designated Agencies,					7	1.5
including Designated consumers, State Designated Agencies,					/	15
Integrated energy policy, National action plan on climate change.						
		integra	ted energy policy, National action plan on climate cha	nge.		

П	Energy audit, definition, need, types of the energy audit. Energy management (audit) approach - understanding energy costs, benchmarking, energy performance, optimizing the input energy requirements, energy audit instruments and metering, smart metering. Roles and responsibilities of an energy manager, Financial Analysis Techniques, CUSUM Technique, Energy Management Information Systems (EMIS), ESCO Concept, ESCO Contracts.	7	15
	First Internal Examination		
III	Energy conservation in boilers-Types of fuel used - properties of fuel- oil, coal and gas. Stoichiometry, Boiler efficiency- performance of a boiler, Heat Loss Estimation, Steam Traps, Steam Piping & Distribution. Thermic Fluid Heaters – Insulation & Refractories.	7	15
IV	Cogeneration – Principles & Operation, Power Ratio, Economics of Cogeneration Scheme, Case Study on Cogeneration, WHR – Sources & Grades, Types (Heat Wheel, Recuperators, Regenerators, Heat Pipe etc), Scheme Evaluation, Economics of WHR Systems. Thermal Energy Storage – Basics & Concepts as an ENCON scheme.	7	15
	Second Internal Examination		
V	Energy conservation in refrigeration and air conditioning systems- EER / SEC Evaluation –. Types & Applications of Cooling Towers, Basics, Performance Analysis. DG Set – Performance Prediction, Cost of Power Generation. Energy conservation in Cooling Towers and DG set.	7	20
VI	Energy conservation in Compressors, furnaces and heat exchangers-Case study of energy conservation in energy-intensive industries-Steel, cement, paper.	7	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P: Credits	Year of Introduction					
10EE6126	ENERGY MANAGEMENT	3-0-0:3	2015					
	Course Prerequisites Basic knowledge of Electrical & Mechanical Engineering at UG Level.							
Course Obje								
0	esigned to provide students the knowledge and ability to	o understand f	he principles of					
	gement and apply this to practical systems.		ne principies of					
Syllabus	,							
v	energy management. Energy auditing-Electric motors-	Variable speed	drives: Pumps and					
	Power management-Lighting- Compressed Air Systems							
	stems-Boiler -Cogeneration- Electric water heating-Sol							
systems.								
Expected Ou	tcomes							
On successful	completion of the course, the student will be able to							
1. Acqui	re the need of energy conservation							
	se types and objectives of energy auditing							
	ze the methods for reactive power compensation							
	ze tools for economics of energy conservation							
	ze the ECO (Energy Conservation opportunity) in electr	ric systems suc	ch as motors,					
lightin	-							
•	ze the ECO (Energy Conservation opportunity) in mech	anical systems	s such as boilers,					
	, compressors, water heaters etc.							
References								
	Book for National Certification Examination for Energy	0	Energy Auditors –					
	of Energy Efficiency, Ministry of Power, Govt of India		achantz Iain					
Z. Handbe TERI, 2	ok on Energy Audit and Environment Management, Y	P ADDI alla SI	iashank Jam,					
	ion, Generation & Conservation of Electrical Energy, S	unil S Rao Kl	anna nublishers					
2007.	ion, Generation & Conservation of Electrical Energy, 5		ianna puonsners,					
	y J. Pansini, Kenneth D. Smalling, Guide to Electric Lo	ad Manageme	nt Pennwell Pub:					
(1998)		uu muugome	, i eniti en i ue,					
. ,	H., 'Art and Science of Utilisation of Electrical Energy',	Dhanpat Rai	and Sons, New					
Delhi.		1	,					
6. Tripath	y S.C., 'Electric Energy Utilization And Conservation', '	Tata McGraw	Hill, 1991					
7. L.C.Wi	tte, P.S.Schmidt, D.R.Brown, Industrial Energy Manage	ement and Util	lisation,					
Hemisp	here Publ, Washington, 1988.							
	Course plan							
			Semester Exam					
Module	Content	Hours	Marks (%)					
Imp	ortance of energy management, electric energy	ergy						
-		stem						
appi	oach and End-use approach to efficient use of Electric	city, _o	15					
I Elec	tricity tariff types, Types and objectives, audit instrume	ents, ^ð	15					
	ific energy analysis, Minimum energy paths, consump							
mod	models, Case study. Demand-side management.							
	tric motors- Energy efficient controls and starting -M							
	ciency and Load Analysis- Energy-efficient motors-C		15					
stud	y; Load Matching and selection of motors-Variable sp	beed '	15					
driv	es.							

	First Internal Examination		
III	Reactive Power management-Capacitor Sizing-Degree of Compensation-Capacitor losses- Location-Placement Maintenance, case study. Peak Demand controls Methodologies- Types of Industrial loads-Optimal Load scheduling-case study.	8	15
IV	ECO assessment and Economic methods- Simple payback period- time value of money-Net Present value- Internal rate of return Lighting- Energy efficient light sources-Energy conservation in Lighting Schemes- Electronic ballast-Power quality issues Luminaries, case study.	7	15
	Second Internal Examination		
V	 Energy conservation in Pumps- Optimal selection and sizing - Case study- Fans (flow control), Refrigeration & air conditioning systems. Boiler -efficiency testing, excess air control, Steam distribution & use- steam traps, condensate recovery, flash steam utilization Cogeneration-Types and Schemes-Optimal operation of cogeneration plants-case study 	6	20
VI	Power Consumption in Compressors, Energy conservation measures. Water heating-Gysers-Solar Water Heaters- solar PV Systems.	6	20

Cours No.	se Course Name	L-T-P: Credits	Year of Introduction					
10ME6	122 QUALITY AND RELIABILITY ENGINEERING	3-0-0: 3	2015					
Course Prerequisites Fundamental knowledge in probability theory and statistics is desirable.								
To learn	Course Objectives To learn in-depth the quality and reliability aspects with emphasis on an industrial-organizational environment.							
methods-	al Quality Control-Total Quality management-QMS-ISO Six sigma concepts- Design of experiments- Reliability- Total I y management.		Ũ					
Expected After con 1. Id 2. P 3. E	I Outcomes npleting the course, the students will be able to lentify and describe various areas in the quality control and relia an and design a quality control program in an industry/organiza stimate the reliability of complex engineering systems ain good understanding of the principles of total productive mat	tion.	eering fields.					
 References Dale H; Besterfield, Total Quality Management, Pearson Education Inc, 3rd Edition, 2003. Caplen, Practical Approach to Quality Control, Random House, 1994. O'Connor, Practical Reliability Engineering, John Wiley and Sons, 5th Edition, 2012 Ryan, Statistical Methods for Quality Improvement, John Wiley and Sons, 3rd Edition, 2011. Ross, Taguchi Techniques for Quality Engineering, McGraw Hill Publishers, 2nd Edition, 1995. Douglas C. Montgomery. Design and Analysis of Experiments, John Wiley and Sons, 6th Edition, 2004. 								
	alaguruswami E., Reliability Engineering, Tata Mc Graw Hill F Course plan							
Module	Content	Contact Hours	Semester Exam Marks (%)					
Ι	Basic concepts and definition, Traditional Quality Contro Total Quality Management, Deming's principles, Custome focus, Employee involvement, Continuous proces improvement, PDCA cycle	er	15					
II	Seven step process, Kaizen, Quality measurements, Quality costs, QFD, QMS-ISO9000 standards-requirements and documentation, Taguchi methods, quality loss function. Parameter design and Tolerance design concepts	d	15					
	First Internal Examination							
III	Six sigma concepts –define and measure phase, flowchartin, basic tools, probability and hazard plotting, Six sigm measurements, basic control charts and process performance matrices, Measurement systems analysis.		15					

	Design of experiments-basics, single factor, two-factor				
IV	experiments. ANOVA, Taguchi approach to the design of experiments, orthogonal arrays, Signal to noise ratio, RSM-concepts and methods.	8	15		
Second Internal Examination					
V	Fundamental aspects of reliability, Reliability mathematics, Reliability testing and evaluation methods. FMEA, Failure data analysis.	8	20		
VI	Total Productive Maintenance, maintainability and Availability Concepts, Reliability management.	8	20		
	Cluster Level End Semester Examination				

Cour No.		Course Name	Γ-P: edits		Year of Introduction		
10ME6	5516	BIOENERGY TECHNOLOGIES 3-	0-0:3		2020		
Prerequ							
		edge in Thermodynamics.					
1. Di kn bio 2. En	 Objectives Dissemination of important information on bioenergy to enable students to acquire knowledge on cutting-edge technologies for conversion of various biomass feedstocks to bioenergy/biofuel and their utilization in combustion engines/devices and fuel cells. Enable the students to contribute towards providing biomass-based sustainable energy solutions. 						
Syllabus							
 Introduction to bioenergy, biomass harvesting, characterization of biomass feedstock, classification of biomass feedstock- first, second and third-generation biofuels, Different pre-treatment processes of biomass; different production routes for biomass conversion to biofuels, Utilization of biomass in external combustion engines. Expected Outcomes On successful completion of the course, the student will be able to Explain the classification and characterization of biomass feedstock. Compare the different production routes for biomass conversion to biofuels Explain the vorking of biomass-based incineration plants, co-firing of biomass for heat generation for industrial processes and biomass-fuelled combustion devices. Discuss the utilization of biomass in external combustion engines including the steam turbine power plant and Stirling engine. References Jay J. C., Biomass to Renewable Energy Processes, Taylor and Francis, CRC Press, 2018 Konur O., Bioenergy and Biofuels, Taylor and Francis, CRC Press, 2018 Love J. and Bryant J. A., Biofuels and Bioenergy, John Wiley & Sons, 2017 Henderson O. P., Biomass for Energy, Nova Science Publishers, 2011 							
5. M	ukunda,	H. S., Understanding Clean Energy and Fuels from	Biomass	, Wile	ey India, 2011.		
		Course Plan					
Module		Content	Но	ours	Semester Exam Marks (%)		
I	and a charact propert value,	action to bioenergy; biomass harvesting; available ssessment of biomass for bioenergy application terization of biomass feedstock (Physico-chem- ties, ultimate, proximate, compositional, calor thermogravimetric, differential thermal and ash fur- rature analyses).	ons; ical rific	7	15		
II	genera	ication of biomass feedstock: first, second and th tion biofuels; hybrid biofuels, basic principles cal thermodynamics; carbon-neutral fuels.		7	15		
		First Internal Examination					
III	product biochest and for	ent pre-treatment processes of biomass; diffe tion routes for biomass conversion to biofu- mical methods (anaerobic, enzymatic- saccharifica ermentation process, and dark fermentation, A tation).	els: tion	7	15		

IV	Chemical processes (transesterification, hydro-processing, micro-emulsification); thermochemical methods (combustion, gasification, pyrolysis, partial oxidation, auto- thermal reforming) for biofuels production including synthesis gas, bio-hydrogen, ethanol, butanol, biogas, methanol, dimethyl ether and paraffinic fuels.	7	15		
Second Internal Examination					
V	Biomass compaction (briquetting and palletisation); biofuel quality up-gradation; and biomass and biofuel quality norms. Biomass-based incineration plant for heat generation; co- firing of biomass for heat generation for industrial processes; Biomass fuelled combustion devices for cooking and heating applications.	7	20		
VI	Utilization of biomass in external combustion engines including steam turbine power plant and Stirling engines; utilization of biofuels in a gas turbine, internal combustion engines and fuel cells; analysis of carbon neutral and carbon credit.	7	20		
Cluster Level End Semester Examination					

Course	e No. Course Name	L-T-P Credit		Year of ntroduction				
10ME6	5518 COMPUTATIONAL METHODS IN FLUID FLOW	3-0-0:	3	2020				
Course Prerequisites								
A course on Mechanics of Fluids and heat transfer at the UG or PG level								
	Objectives e the students to							
	Use governing equations of viscous fluid flows for Numerica	l analysis	of flow	problems				
	Inderstand numerical modelling and its role in the field of fl	•						
3. U	Inderstand the various discretization methods, solution proce	edures and	ł turbule	nce modelling.				
	olve numerically complex problems in the field of fluid flow	w and heat	t transfer	using high-				
-	peed computers.							
Syllabus	s ion to CFD, Governing equations, Steady and unsteady flow	vs. Analvt	ical solu	tion of				
	nensional convection-diffusion equation, Statistical represen							
	types of turbulence models, Grid generation, Pressure-velo							
-	essible flows.							
-	d Outcomes							
	essful completion of the course, the students will be able to ormulate the fluid flow and or heat transfer problems mathe	matically						
	Ise various discretization schemes for forming difference eq	•						
	overning equations.							
U	pply the various discretization methods and solution proceed	lures for h	eat trans	fer and				
	uid flow problems.							
	spply the Numerical Techniques to carry out M Tech project	t work wh	ich invol	ves a				
Reference	numerical investigation of heat transfer problems.							
	ersteeg H. K., Malalasekera W., An introduction to Compute	ational Flu	id Dyna	mics. 2 nd				
	lition, Longman, 2008		J					
	tankar Suhas V., Numerical Heat Transfer and Fluid Flow, '							
3. Dale Anderson, John C. Tannehill, Richard H. Pletcher, Ramakanth Munipalli, Vijaya Shankar,								
Computational Fluid Mechanics and Heat Transfer, 4 th Edition, CRC Press, 2020.								
Course plan								
	~			Semester				
Module	Content		Hours	Exam Morks (%)				
	Introduction to CFD, Historical background, appli	cations		Marks (%)				
	advantages. Basic steps of CFD –Meshes - Structur	· · · · ·						
Ι	unstructured mesh, Classification of structured grids. Go		7	15				
	equations: continuity and momentum equations.v Eu	ler and						
	Navier-Stokes equations.							
	Steady and unsteady flows. Boundary conditions such as							
	boundary condition, Neumann boundary condition and co boundary condition.	mvective						
	TDMA method- Numerical problem up to four unknow	ns using	7	15				
	TDMA.	8						
	Cell centered finite volume discretisation of terms of g	U						
	equations such as unsteady, convective and diffusion terms							
First Internal Examination								

III	The solution of the one-dimensional convection-diffusion equation. Upwind, central and blended difference approximations for convection term, QUICK scheme. Implicit, explicit and Crank- Nicolson schemes	7	15
IV	A statistical representation of turbulent flows: Homogeneous turbulence and isotropic turbulence, General Properties of turbulent quantities, Reynolds averaged Navier Stokes (RANS) equation, Closure problem in turbulence		15
Second Internal Examination			
V	Turbulence modeling, Different types of turbulence models: advantages and disadvantages. Structured Grid generation – Unstructured Grid generation– Mesh refinement – Adaptive mesh	7	20
VI	Pressure-velocity coupling for incompressible flows – SIMPLE, SIMPLER, SIMPLEC and PISO algorithms.	7	20
	Cluster Level End Semester Examination		

10EE6116 POWER CONVERSION IN RENEWABLE ENERGY SYSTEMS 3-0-0:3 2015 Course Prerequisites Basic knowledge in Electrical power systems and Power Electronics at the UG level. Course Objectives Solar power and the renewable energy sources and the application of power electronic devices and converters in renewable energy systems. Solar photovoltaic systems, bioenergy, wind energy, fuel cells, ocean energy, MHD, Geothermal and Small hydro systems. Syllabus Solar photovoltaic systems, bioenergy, wind energy systems. Expected Outcomes Sudents who complete this course will have the ability to understand the fundamental concepts of generating electrical energy from renewable energy systems. References: 1. D P Kothari and Nagrath, "Modern Power System Analysis", Mcgraw Hill, Chapter 1, 2011. 2. Thomas Ackerman, "Wind power in power systems," John Wiley& Sons, Chapter 4, London, 2005. 3. M G Simoes and F A Farret, "Alternate energy systems, "CRCPress, Chapter7, London, 2008. 4. Domkundvar, "Solar Energy Resources", Dhanpatrai& Sons, New Delhi. 5. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp. 1.6.21, Achen 2004. 6. P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power application", in proc IEEE conf. vol.89, no 12, Dec. 2001. 8 15 1 Nodule Context Hours Semester Exam Marks 16 1 systems-folded PV systems- the requirement for maxim	Course I	No. Course Name	L-T-P- Credits	Year of Introduction						
Basic knowledge in Electrical power systems and Power Electronics at the UG level. Course Objectives To give an idea about the renewable energy sources and the application of power electronic devices and converters in renewable energy systems. Syllabus Solar photovoltaic systems, bioenergy, wind energy, fuel cells, ocean energy, MHD, Geothermal and Small bydro systems. Expected Outcomes Students who complete this course will have the ability to understand the fundamental concepts of generating electrical energy from renewable energy systems. References: 1. D P Kothari and Nagrath, "Modern Power System Analysis", Megraw Hill, Chapter 1, 2011. 2. Thomas Ackerman, "Wind power in power systems," John Wiley& Sons, Chapter 4, London, 2005. 3. M G Simoes and F A Farret, "Alternate energy systems, "CRCPress, Chapter7, London, 2005. 1 P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronic specialist conference, vol.1, no 1, pp.16-21, Aachen 2004. 5. P Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Starge systems for advanced power systems. Given conversion to electricity- grid-interactive PV systems-fusiled (MPPT) - dc to dc converter topologies for MPPT 1 Introduction to renewable energy sources and potential-Solar energy needs and its utilization-Solar thermomechanical systems. direct conversion to electricity- grid-inte	10EE61									
Course Objectives To give an idea about the renewable energy sources and the application of power electronic devices and converters in renewable energy systems. Syllabus Solar photovoltaic systems, bioenergy, wind energy, fuel cells, ocean energy, MHD, Geothermal and Small hydro systems. Expected Outcomes Students who complete this course will have the ability to understand the fundamental concepts of generating electrical energy from renewable energy systems. References: 1. D P Kothari and Nagrath, "Modern Power System Analysis", Megraw Hill, Chapter 1, 2011. 2. Thomas Ackerman, "Wind power in power systems", John Wiley& Sons, Chapter 1, condon, 2005. 3. M G Simoes and F A Farret, "Alternate energy systems, "CRCPress, Chapter7, London, 2008. 4. Domkundvar, "Solar Energy Resources", Dhanpatrai& Sons, New Delhi. 5. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp.16-21, Aachen 2004. 6 P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power application", in proc IEEE conf. vol.89, no 12, Dec. 2001. Course plan Module Content Hours Semester Exam Marks 15 1 Introduction to renewable energy sources and potential-Solar energy needs and its utilization-Solar thermomechanical systems-sloalede PV systems-scolare the power tracking (MPP	-									
To give an idea about the renewable energy sources and the application of power electronic devices and converters in renewable energy systems. Syllabus Solar photovoltaic systems, bioenergy, wind energy, fuel cells, ocean energy, MHD, Geothermal and Small hydro systems. Expected Outcomes Students who complete this course will have the ability to understand the fundamental concepts of generating electrical energy from renewable energy systems. References: 1. D P Kothari and Nagrath, "Modern Power System Analysis", Mcgraw Hill, Chapter 1, 2011. 2. Thomas Ackerman, "Wind power in power systems", John Wiley& Sons, Chapter 4, London, 2005. 3. M G Simoes and F A Farret, "Alternate energy systems," John Wiley& Sons, Chapter 4, London, 2005. 3. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp.16-21, Aachen 2004. 6. P F Rebeiro, B K Ihonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power application", in proc IEEE cont. vol.89, no 12, Dec. 2001. 5. J P Lyons and V Vlatkovic, "power lectricity- grid-interactive PV systems-direct conversion to electricity- grid-interactive PV systems-direct conversion to electricity- grid-interactive PV systems-direct conversion to electricity- grid-interactive PV systems-loaded PV systems - the requirement for maximum polications - Biomass gasifiers.—Electrical energy and pplications - Biomass gasifiers.—Electrical energy and pplications - Biomass gasifiers.—Electrical energy for the system set - Biogas plants- Technology and tastus- Biogas generation- types of biogas plants. Technology and tastus - Biogas generation- types of biogas plants-community biogas plants.			at the UG leve	21.						
and converters in renewable energy systems. Syllabus Solar photovoltaic systems, bioenergy, wind energy, fuel cells, ocean energy, MHD, Geothermal and Small hydro systems. Expected Outcomes Students who complete this course will have the ability to understand the fundamental concepts of generating electrical energy from renewable energy systems. References: 1.0 P Kothari and Nagrath, "Modern Power System Analysis", Mcgraw Hill, Chapter 1, 2011. 2.1 Thomas Ackerman, "Wind power in power systems," John Wiley& Sons, Chapter 4, London, 2005. 3 M G Simoes and F A Farret, "Alternate energy systems, "CRCPress, Chapter7, London, 2008. Loomkundvar, "Solar Energy Resources", Dhanpatrai& Sons, New Delhi. 5.1 P Lyons and V Vlatkovie, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp.16–21, Aachen 2004. Course plan Module Mours Semester Exam Marks Introduction to renewable energy sources and potential-Solar energy needs and its utilization-Solar thermomechanical systems-fisolated PV systems the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT- control algorithms for MPPT 8 15 Introduction to biomass gasifiers.—Electrical energy coversion methods-biomass gasifiers.—Electroical ener		•								
Solar photovoltaic systems, bioenergy, wind energy, fuel cells, ocean energy, MHD, Geothermal and Sonall hydro systems. Expected Outcomes Students who complete this course will have the ability to understand the fundamental concepts of generating electrical energy from renewable energy systems. References: 1 D P Kothari and Nagrath, "Modern Power System Analysis", Mcgraw Hill, Chapter 1, 2011. 2. Thomas Ackerman, "Wind power in power systems," CRCPress, Chapter 7, London, 2008. 3. M G Simoes and F A Farret, "Alternate energy systems," CRCPress, Chapter 7, London, 2008. 4. Domkundvar, "Solar Energy Resources", Dhanpatrai& Sons, New Delhi. 5. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp.16-21, Aachen 2004. 6. P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power application", in proc IEEE conf. vol.89, no 12, Dec. 2001. Vourse plan Module Morduction to renewable energy sources and potential-Solar energy needs and its utilization-Solar thermomechanical systems-direct conversion to electricity- grid-interactive PV systems-direct conversion to telectricity erid-interactive PV systems-direct conversion process. 8 15 Introduction to biomass gasifiers.—Electrical energy conversion methods-biomass conversion process. 6 15 III Mind ene	U									
Solar photovoltaic systems, bioenergy, wind energy, fuel cells, ocean energy, MHD, Geothermal and Small hydro systems. Expected Outcomes Expected Outcomes Students who complete this course will have the ability to understand the fundamental concepts of generating electrical energy from renewable energy systems. Network in the fundamental concepts of generating electrical energy from renewable energy systems. References: I. D P Kothari and Nagrath, "Modern Power System Analysis", Mcgraw Hill, Chapter 1, 2011. 2. Thomas Ackerman, "Wind power in power systems," CRCPress, Chapter7, London, 2008. Somos and F A Farret, "Alternate energy systems, "CRCPress, Chapter7, London, 2008. 4. Domkundvar, "Solar Energy Resources", Dhanpatrai& Sons, New Delhi. 5. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electonics specialist conference, vol.1, no 1, pp.16-21, Aachen 2004. 6. P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power application", in proc IEEE conf. vol.89, no 12, Dec. 2001. Vourse plan Module Content Hours Semester Exam Marks 1 Introduction to renewable energy sources and potential- Solar energy needs and its utilization-Solar thermomechanical systems-licet conversion to electricity- grid-interactive PV systems-licet conversion to electricity- grid-interactive PV systems-licet conversion process. 6 15 1 Biogas plant-ommunity biogas plants. 6 15		ters in tenewable chergy systems.								
Small hydro systems. Expected Outcomes Students who complete this course will have the ability to understand the fundamental concepts of generating electrical energy from renewable energy systems. References: 1. D P Kothari and Nagrath, "Modern Power System Analysis", Mcgraw Hill, Chapter 1, 2011. 2. Thomas Ackerman, "Wind power in power systems," John Wiley& Sons, Chapter 4, London, 2005. 3. M G Simoes and F A Farret, "Alternate energy systems, "CRCPress, Chapter7, London, 2008. 4. Domkundvar, "Solar Energy Resources", Dhanpatrai& Sons, New Delhi. 5. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp.16-21, Aachen 2004. 6. P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Norage systems for advanced power application", in proc IEEE conf. vol.89, no 12, Dec. 2001. Vourse plan Module Module Mours Semester Exam Marks 1 systems-loated PV systems- the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT- control algorithms for MPPT 8 15 11 Biogas plants- Technology and status- Biogas generation-types of biogas plants- Community biogas plants. 6 15 12 Vind energy - Resonace potential -Vertical axis and horizontal axis wind turbines – Gilbert's limit - Power so types o	v	ovoltaic systems, bioenergy, wind energy, fuel cells, ocean	energy, MHD.	Geothermal and						
Expected Outcomes Students who complete this course will have the ability to understand the fundamental concepts of generating electrical energy from renewable energy systems. References: 1. D P Kothari and Nagrath, "Modern Power System Analysis", Mcgraw Hill, Chapter 1, 2011. 2. Thomas Ackerman, "Wind power in power systems", John Wiley& Sons, Chapter 4, London, 2005. 3. M G Simoes and F A Farret, "Alternate energy systems," CRCPress, Chapter7, London, 2008. 4. Domkundvar, "Solar Energy Resources", Dhanpatrai& Sons, New Delhi. 5. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp. 16-21, Aachen 2004. 6. P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power application", in proc IEEE conf. vol.89, no 12, Dec. 2001. Course plan Module Mours Semester Exam Marks 1 Solar energy needs and its utilization-Solar thermomechanical systems-licet conversion to electricity- grid-interactive PV systems-the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT 8 15 11 Introduction to biomass -Resource potential -technology and applications - Biomass gasifiers.—Electrical energy is biogas plants- Technology and status- Biogas generation-types of biogas plant-community biogas plants. 6 15 Introductio	-									
generating electrical energy from renewable energy systems. References: 1. D P Kothari and Nagrath, "Modern Power System Analysis", Megraw Hill, Chapter 1, 2011. 2. Thomas Ackerman, "Wind power in power systems", John Wiley& Sons, Chapter 4, London, 2005. 3. M G Simoes and F A Farret, "Alternate energy systems, "CRCPress, Chapter7, London, 2008. 4. Domkundvar, "Solar Energy Resources", Dhanpatrai& Sons, New Delhi. 5. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp.16-21, Aachen 2004. 6. P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power aplication", in proc IEEE conf. vol.89, no 12, Dec. 2001. Volume Content Hours Ban Module Content Hours Benester Exam Marks Introduction to renewable energy sources and potential-Solar energy needs and its utilization-Solar thermomechanical Systems-Isolated PV systems the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT 8 15 II Introduction to biomass -Resource potential -technology and applications - Biomass gasifiersElectrical energy conversion methods-biomass conversion process. 6 15 III Onications - Beionase gasifiersElectrical and anon horizontal axis wind turbines -Gilbert's limit- Power conversion methods-biomass conve										
References: 1. D P Kothari and Nagrath, "Modern Power System Analysis", Mcgraw Hill, Chapter 1, 2011. 2. Thomas Ackerman, "Wind power in power systems", John Wiley& Sons, Chapter 1, London, 2005. 3. M G Simoes and F A Farret, "Alternate energy systems, "CRCPress, Chapter7, London, 2008. 4. Domkundvar, "Solar Energy Resources", Dhanpatrai& Sons, New Delhi. 5. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp.16-21, Aachen 2004. 6. P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power application", in proc IEEE conf. vol.89, no 12, Dec. 2001. Course plan Module Module Course plan Nonreguestion on electricity- grid-interactive PV systems-Isolated PV systems- the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT- control algorithms for MPPT Introduction to biomass -Resource potential -technology and applications - Biomass gasifiers.—Electrical energy applications - Biomass gasifiers.—Electrical energy for applications - Biomass gasifiers.—Electrical energy for the engine mainty biogas plants. Introduction to biomass -Resource potential -technology and horizontal axis wind turbines -Gilbert's limit - Power (cofficient - wind farms -Power plants -Generators for Generators for WECS - Induction Generators - Solid-state converters and control III <td< td=""><td>Students v</td><td>who complete this course will have the ability to understan</td><td>d the fundame</td><td>ental concepts of</td></td<>	Students v	who complete this course will have the ability to understan	d the fundame	ental concepts of						
1. D P Kothari and Nagrath, "Modern Power System Analysis", Mcgraw Hill, Chapter 1, 2011. 2. Thomas Ackerman, "Wind power in power systems," John Wiley& Sons, Chapter 4, London, 2005. 3. M G Simoes and F A Farret, "Alternate energy systems, "CRCPress, Chapter7, London, 2008. 4. Domkundvar, "Solar Energy Resources", Dhanpatrai& Sons, New Delhi. 5. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp.16-21, Aachen 2004. 6. P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power application", in proc IEEE conf. vol.89, no 12, Dec. 2001. Course plan Module Mours Semester Exam Marks I Introduction to renewable energy sources and potential-Solar energy needs and its utilization-Solar thermomechanical systems-lisolated PV systems- the requirement for maximum power tracking (MPPT) - de to dc converter topologies for MPPT - Introduction to biomass agaifiers.—Electrical energy and applications - Biomass gasifiers.—Electrical energy and applications - Biomass gasifiers.—Electrical energy is of biogas plants. 6 15 Wind energy - Resonance potential -Vertical axis and horizontal axis wind turbines -Gilbert's limit. Power for WECS - Induction Generators. Solid-state converters and control 8 15 V Geothermal Energy - Resources of Geothermal -vapour gas Wind energy - Resonance potential -Vertical axis and horizontal axis wind tur										
2. Thomas Ackerman, "Wind power in power systems", John Wiley& Sons, Chapter 4, London, 2005. 3. M G Simoes and F A Farret, "Alternate energy systems, "CRCPress, Chapter7, London, 2008. 4. Domkundvar, "Solar Energy Resources", Dhanpatrai& Sons, New Delhi. 5. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp.16-21, Aachen 2004. 6. P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power application", in proc IEEE conf. vol.89, no 12, Dec. 2001. Course plan Module Semester Exam Marks Introduction to renewable energy sources and potential-Solar energy needs and its utilization-Solar thermomechanical systems-lisolated PV systems- the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT- control algorithms for MPPT 8 15 Introduction to biomass -Resource potential -technology and applications - Biomass gasifiers.—Electrical energy conversion methods-biomass conversion process. Biogas plants. 6 15 Biogas plants - Technology and status- Biogas generation-types of biogas plant-community biogas plants. 8 15 Vind energy - Resonance potential -Vertical axis and horizontal axis wind turbines –Gilbert's limit- Power coefficient – wind farms –Power plants –Generators for 8 15 III Wind energy - Resonance potential –Vertical axis and horizontal axis wind turbines –Gilbert's limit- Power co										
2005. 3. M G Simoes and F A Farret, "Alternate energy systems, "CRCPress, Chapter7, London, 2008. 4. Domkundvar, "Solar Energy Resources", Dhanpatrai& Sons, New Delhi. 5. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp.16-21, Aachen 2004. 6. P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power application", in proc IEEE conf. vol.89, no 12, Dec. 2001. Course plan Module Content Hours Semester Exam Marks Introduction to renewable energy sources and potential-Solar energy needs and its utilization-Solar thermomechanical systems-direct conversion to electricity- grid-interactive PV systems-Isolated PV systems- the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT 8 15 Introduction to biomass -Resource potential -technology and applications - Biomass gasifiers.—Electrical energy conversion methods-biomass conversion process. 6 15 Biogas plants- Technology and status- Biogas generation-types of biogas plant-community biogas plants. 8 15 Vind energy – Resonance potential -Vertical axis and horizontal axis wind turbines –Gilbert's limit- Power coefficient – wind farms –Power plants – Generators for WECS- Induction Generators- Solid-state converters and control 8 15 V Fuel cells: Introduction – working –efficiency –classification cortrol 6 15			-							
3. M G Simoes and F A Farret, "Alternate energy systems, "CRCPress, Chapter7, London, 2008. 4. Domkundvar, "Solar Energy Resources", Dhanpatrai& Sons, New Delhi. 5. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp.16-21, Aachen 2004. 6. P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power application", in proc IEEE conf. vol.89, no 12, Dec. 2001. Course plan Module Content Hours Semester Exam Marks Introduction to renewable energy sources and potential-Solar energy needs and its utilization-Solar thermomechanical systems-lisolated PV systems- the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT 8 15 Introduction to biomass -Resource potential –technology and applications - Biomass gasifiers.—Electrical energy conversion methods-biomass conversion process. 6 15 Biogas plants- Technology and status- Biogas generation-types of biogas plants. 8 15 Vind wind energy - Resonance potential -Vertical axis and horizontal axis wind turbines –Gilbert's limit- Power coefficient – wind farms –Power plants –Generators for WECS- Induction Generators- Solid-state converters and control 8 15 V Geothermal Energy- Resources of Geothermal –vapour V Geothermal Energy- Resources of Geothermal –vapour 8 15		s Ackerman, "Wind power in power systems", John Wile	y& Sons, Cha	apter 4, London,						
 4. Domkundvar, "Solar Energy Resources", Dhanpatrai& Sons, New Delhi. 5. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp.16-21, Aachen 2004. 6. P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power application", in proc IEEE conf. vol.89, no 12, Dec. 2001. Module Content Hours Flam Introduction to renewable energy sources and potential-Solar energy needs and its utilization-Solar thermomechanical systems-licet conversion to electricity- grid-interactive PV systems-licet conversion to electricity- grid-interactive PV systems-licet conversion to electricity endininteractive energy and power tracking (MPPT) - dc to dc converter topologies for MPPT- control algorithms for MPPT Introduction to biomass -Resource potential -technology and applications - Biomass gasifiers.—Electrical energy econversion methods—biomass conversion process. Biogas plants- Technology and status- Biogas generation-types of biogas plant-community biogas plants. Wind energy - Resonance potential -Vertical axis and horizontal axis wind turbines -Gilbert's limit- Power lants -Generators for WECS- Induction Generators- Solid-state converters and control WeCS- Induction - working -efficiency -classification -performance characteristics – dc-dc converters and control Fuel cells: Introduction - working -efficiency -classification -performance characteristics – dc-dc converters and control Geothermal Energy- Resources of Geothermal -vapour 		mass and E.A. Format. "Altermate anarous systems. "CDCDross	Chapter 7 I c	under 2008						
5. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp.16-21, Aachen 2004. 6. P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power application", in proc IEEE conf. vol.89, no 12, Dec. 2001. Course plan Module Hours Semester Exam Marks Solar energy needs and its utilization-Solar thermomechanical systems-direct conversion to electricity- grid-interactive PV systems-sloated PV systems the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT control algorithms for MPPT 8 15 Introduction to biomass -Resource potential -technology and applications - Biomass gasifiers.—Electrical energy applications - Biomass gasifiers.—Electrical energy applications - Biomass gasifiers.—Electrical energy conversion methods-biomass conversion process. 6 15 Biogas plants- Technology and status- Biogas generation- types of biogas plant-community biogas plants. 8 15 III Wind energy - Resonance potential -vertical axis and horizontal axis wind turbines -Gilbert's limit - Power coefficient – wind farms -Power plants -Generators for WECS- Induction Generators-Solid-state converters and control or performance characteristics – de-dc converters and control 6 15 IV Fuel cells: Introduction – working -efficiency -classification - performance characteristics – de-dc converters and control 6 15 V Geothermal				ildoll, 2008.						
power electronics specialist conference, vol.1, no 1, pp.16-21, Aachen 2004.6. P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power application", in proc IEEE conf. vol.89, no 12, Dec. 2001.Course planModuleMenurySemester Exam MarksModuleCourse planHoursSemester Exam MarksIIntroduction to renewable energy sources and potential-Solar energy needs and its utilization-Solar thermomechanical systems-direct conversion to electricity- grid-interactive PV systems-Isolated PV systems- the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT- control algorithms for MPPT815IIIntroduction to biomass -Resource potential -technology and applications - Biomass gasifiersElectrical energy conversion methods-biomass conversion process. Biogas plants- Technology and status- Biogas generation-types of biogas plant-community biogas plants.15IIIWind energy - Resonance potential -Vertical axis and horizontal axis wind turbines -Gilbert's limit- Power coefficient - wind farms -Power plants -Generators for WECS- Induction Generators- Solid-state converters and control -performance characteristics - dc-dc converters and control -performance characteristics - dc-dc converters and control615				n" in proc IEEE						
6. P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power application", in proc IEEE conf. vol.89, no 12, Dec. 2001. Module Course plan Module Content Hours Semester Exam Marks Introduction to renewable energy sources and potential-Solar energy needs and its utilization-Solar thermomechanical systems-Isolated PV systems- the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT- control algorithms for MPPT 8 15 Introduction to biomass -Resource potential -technology and applications - Biomass gasifiersElectrical energy conversion methods-biomass conversion process. 6 15 Biogas plants- Technology and status- Biogas generation-types of biogas plant-community biogas plants. 8 15 IIII Wind energy - Resonance potential -Vertical axis and horizontal axis wind turbines -Gilbert's limit- Power coefficient – wind farms -Power plants -Generators for WECS- Induction Generators. Solid-state converters and control 8 15 IV Fuel cells: Introduction – working -efficiency -classification -performance characteristics – dc-dc converters and control 6 15 V Geothermal Energy - Resources of Geothermal -vapour 8 20										
power application", in proc IEEE conf. vol.89, no 12, Dec. 2001.Course planModuleMoursSemester Exam MarksIntroduction to renewable energy sources and potential- Solar energy needs and its utilization-Solar thermomechanical systems-direct conversion to electricity- grid-interactive PV systems-lsolated PV systems the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT- control algorithms for MPPT815Introduction to biomass -Resource potential -technology and applications - Biomass gasifiers.—Electrical energy conversion methods-biomass conversion process. Biogas plants- Technology and status- Biogas generation- types of biogas plant-community biogas plants.615IIIWind energy - Resonance potential -Vertical axis and horizontal axis wind turbines -Gilbert's limit- Power coefficient - wind farms -Power plants -Generators for WECS- Induction Generators- Solid-state converters and control815IVFuel cells: Introduction - working -efficiency -classification -performance characteristics - dc-dc converters and control615VGeothermal Energy- Resources of Geothermal -vapour820				ems for advanced						
Course planModuleHoursSemester Exam MarksIntroduction to renewable energy sources and potential- Solar energy needs and its utilization-Solar thermomechanical systems-direct conversion to electricity- grid-interactive PV systems-lsolated PV systems- the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT- control algorithms for MPPT815Introduction to biomass -Resource potential -technology and applications - Biomass gasifiersElectrical energy conversion methods-biomass conversion process. Biogas plants- Technology and status- Biogas generation- types of biogas plant-community biogas plants.615IIIIWind energy - Resonance potential -Vertical axis and horizontal axis wind turbines -Gilbert's limit- Power coefficient - wind farms -Power plants -Generators for WECS- Induction Generators Solid-state converters and control815IVFuel cells: Introduction - working -efficiency -classification -performance characteristics - dc-dc converters and control615VGeothermal Energy- Resources of Geothermal -vapour y820										
ModuleContentHoursExam MarksIntroduction to renewable energy sources and potential- Solar energy needs and its utilization-Solar thermomechanical systems-lisolated PV systems- the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT- control algorithms for MPPT815Introduction to biomass -Resource potential -technology and applications - Biomass gasifiersElectrical energy conversion methods-biomass conversion process. Biogas plants- Technology and status- Biogas generation- types of biogas plant-community biogas plants.615IIIWind energy - Resonance potential -Vertical axis and horizontal axis wind turbines -Gilbert's limit- Power coefficient - wind farms -Power plants -Generators for WECS- Induction Generators- Solid-state converters and control815IVFuel cells: Introduction - working -efficiency -classification -performance characteristics - dc-dc converters and control615VGeothermal Energy- Resources of Geothermal -vapour y Resources of Geothermal -vapour820		Course plan								
Introduction to renewable energy sources and potential- Solar energy needs and its utilization-Solar thermomechanical systems-direct conversion to electricity- grid-interactive PV systems-Isolated PV systems- the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT- control algorithms for MPPT815Introduction to biomass -Resource potential -technology and applications - Biomass gasifiersElectrical energy conversion methods-biomass conversion process. Biogas plants- Technology and status- Biogas generation- types of biogas plant-community biogas plants.615Wind energy - Resonance potential -Vertical axis and horizontal axis wind turbines -Gilbert's limit- Power coefficient - wind farms -Power plants -Generators for WECS- Induction Generators- Solid-state converters and control815IVFuel cells: Introduction - working -efficiency -classification -performance characteristics - dc-dc converters and control615VGeothermal Energy- Resources of Geothermal -vapour Second Internal Examination820	Module	Content	Hours							
Isystems-direct conversion to electricity- grid-interactive PV systems-Isolated PV systems- the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT- control algorithms for MPPT815IIIntroduction to biomass -Resource potential -technology and applications - Biomass gasifiersElectrical energy conversion methods-biomass conversion process. Biogas plants- Technology and status- Biogas generation- types of biogas plant-community biogas plants.615First Internal ExaminationIIIWind energy - Resonance potential -Vertical axis and horizontal axis wind turbines -Gilbert's limit- Power coefficient - wind farms -Power plants -Generators for WECS- Induction Generators- Solid-state converters and control815IVFuel cells: Introduction - working -efficiency -classification -performance characteristics - dc-dc converters and control615VGeothermal Energy- Resources of Geothermal -vapour 820		Introduction to renewable energy sources and potential-								
I systems-Isolated PV systems- the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT- control algorithms for MPPT o 1.5 II Introduction to biomass -Resource potential -technology and applications - Biomass gasifiersElectrical energy conversion methods-biomass conversion process. 6 1.5 Biogas plants- Technology and status- Biogas generation-types of biogas plant-community biogas plants. 6 1.5 V Wind energy - Resonance potential -Vertical axis and control 6 1.5 III Wind energy - Resonance potential -Vertical axis and horizontal axis wind turbines -Gilbert's limit- Power 8 1.5 III Puel cells: Introduction - working -efficiency -classification -performance characteristics - dc-dc converters and control 6 1.5 IV Fuel cells: Introduction - working -efficiency -classification -performance characteristics - dc-dc converters and control 6 1.5 V Geothermal Energy- Resources of Geothermal -vapour 8 20		Solar energy needs and its utilization-Solar thermomechan	ical							
systems-Isolated PV systems- the requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT- control algorithms for MPPTIntroduction to biomass -Resource potential -technology and applications - Biomass gasifiersElectrical energy conversion methods-biomass conversion process.615Biogas plants- Technology and status- Biogas generation- types of biogas plant-community biogas plants.615First Internal ExaminationWind energy - Resonance potential -Vertical axis and horizontal axis wind turbines -Gilbert's limit- Power coefficient - wind farms -Power plants -Generators for WECS- Induction Generators- Solid-state converters and control815IVFuel cells: Introduction - working -efficiency -classification -performance characteristics - dc-dc converters and control615	т			15						
MPPT- control algorithms for MPPTImage: Control algorithms for MPPTIIIntroduction to biomass -Resource potential -technology and applications - Biomass gasifiersElectrical energy conversion methods-biomass conversion process.615Biogas plants- Technology and status- Biogas generation-types of biogas plant-community biogas plants.615First Internal ExaminationV Wind energy - Resonance potential -Vertical axis and horizontal axis wind turbines -Gilbert's limit- Power coefficient - wind farms -Power plants -Generators for WECS- Induction Generators- Solid-state converters and control815IVFuel cells: Introduction - working -efficiency -classification -performance characteristics - dc-dc converters and control615VGeothermal Energy- Resources of Geothermal -vapour820	1		um	15						
Introduction to biomass -Resource potential -technology and applications - Biomass gasifiersElectrical energy conversion methods-biomass conversion process.615Biogas plants- Technology and status- Biogas generation- types of biogas plant-community biogas plants.615First Internal ExaminationWind energy - Resonance potential -Vertical axis and horizontal axis wind turbines -Gilbert's limit- Power coefficient - wind farms -Power plants -Generators for WECS- Induction Generators- Solid-state converters and control815IVFuel cells: Introduction - working -efficiency -classification -performance characteristics - dc-dc converters and control615VGeothermal Energy- Resources of Geothermal -vapour 820			for							
IIapplicationsBiomass gasifiersElectrical energy conversion methods-biomass conversion process. Biogas plants- Technology and status- Biogas generation- types of biogas plant-community biogas plants.615 First Internal Examination Wind energy - Resonance potential -Vertical axis and horizontal axis wind turbines -Gilbert's limit- Power coefficient - wind farms -Power plants -Generators for WECS- Induction Generators- Solid-state converters and control815IVFuel cells: Introduction - working -efficiency -classification -performance characteristics - dc-dc converters and control615VGeothermal Energy- Resources of Geothermal -vapour 820										
IIconversion methods-biomass conversion process. Biogas plants- Technology and status- Biogas generation- types of biogas plant-community biogas plants.615Biogas plants- Technology and status- Biogas generation- types of biogas plant-community biogas plants.615First Internal ExaminationWind energy - Resonance potential -Vertical axis and horizontal axis wind turbines -Gilbert's limit- Power coefficient - wind farms -Power plants -Generators for WECS- Induction Generators- Solid-state converters and control815IVFuel cells: Introduction - working -efficiency -classification -performance characteristics - dc-dc converters and control615Second Internal ExaminationVGeothermal Energy- Resources of Geothermal -vapour 820										
Biogas plants- Technology and status- Biogas generation- types of biogas plant-community biogas plants.Image: Community biogas plants and biogrammed and biogrammed and biogrammed and biogrammed axis wind turbines -Gilbert's limit- Power coefficient - wind farms -Power plants -Generators for tool815IIIWECS- Induction Generators- Solid-state converters and control615IVFuel cells: Introduction - working -efficiency -classification -performance characteristics - dc-dc converters and control615VGeothermal Energy- Resources of Geothermal -vapour820	п	•	0.	15						
types of biogas plant-community biogas plants. First Internal Examination Wind energy – Resonance potential –Vertical axis and horizontal axis wind turbines –Gilbert's limit- Power coefficient – wind farms –Power plants –Generators for WECS- Induction Generators- Solid-state converters and control 8 15 IV Fuel cells: Introduction – working –efficiency –classification –performance characteristics – dc-dc converters and control 6 15 Second Internal Examination V Geothermal Energy- Resources of Geothermal –vapour 8 20	11			15						
First Internal Examination First Internal Examination Wind energy – Resonance potential –Vertical axis and horizontal axis wind turbines –Gilbert's limit- Power coefficient – wind farms –Power plants –Generators for 8 15 III coefficient – wind farms –Power plants –Generators for 8 15 WECS- Induction Generators- Solid-state converters and control 15 IV Fuel cells: Introduction – working –efficiency –classification –performance characteristics – dc-dc converters and control 6 15 Second Internal Examination V Geothermal Energy- Resources of Geothermal –vapour 8 20										
III horizontal axis wind turbines –Gilbert's limit- Power coefficient – wind farms –Power plants –Generators for WECS- Induction Generators- Solid-state converters and control 8 15 IV Fuel cells: Introduction – working –efficiency –classification –performance characteristics – dc-dc converters and control 6 15 Second Internal Examination V Geothermal Energy- Resources of Geothermal –vapour 8 20										
III coefficient – wind farms –Power plants –Generators for WECS- Induction Generators- Solid-state converters and control 8 15 IV Fuel cells: Introduction – working –efficiency –classification –performance characteristics – dc-dc converters and control 6 15 Second Internal Examination V Geothermal Energy- Resources of Geothermal –vapour 8 20		Wind energy – Resonance potential –Vertical axis	and							
WECS- Induction Generators- Solid-state converters and control Image: Control of the state converters and converters and converters and control of the state convert		horizontal axis wind turbines -Gilbert's limit- Por	wer							
control Image: Control IV Fuel cells: Introduction – working –efficiency –classification –performance characteristics – dc-dc converters and control 6 15 Second Internal Examination V Geothermal Energy- Resources of Geothermal –vapour 8 20	III	coefficient - wind farms -Power plants -Generators	for 8	15						
IV Fuel cells: Introduction – working –efficiency –classification –performance characteristics – dc-dc converters and control 6 15 Second Internal Examination V Geothermal Energy- Resources of Geothermal –vapour 8 20			and							
IV -performance characteristics – dc-dc converters and control 0 15 Second Internal Examination V Geothermal Energy- Resources of Geothermal –vapour 8 20										
Second Internal Examination V Geothermal Energy- Resources of Geothermal –vapour 8 20	IV		n	15						
V Geothermal Energy- Resources of Geothermal –vapour 8 20		▲								
			0.114							
I dominant system-liquid dominant binary cycle. The total flow	V	dominant system-liquid dominant binary cycle. The total fl	~ ~	20						

	of geothermal power unit- energy conversion systems. MHD: Principle –simplified analysis of MHD- factors affecting the efficiency of MHD-types-present status of MHD generation.				
VI	Ocean energy conversion: OTEC –Principle –cycle, operation of OTEC systems.Location of plants –types –technology and applications- Tidal and wave energy. Small hydropower generation-turbines and generators- grid- tied systems- stand-alone systems- induction generators- Electronic load controllers.	6	20		
	TOTAL	42	100		
	Cluster Level End Semester Examination				

Cours	e No.	Course Name	L-T-P: Credits	Year of Introduction				
10ME6	5326	DESIGN OF HEAT TRANSFER EQUIPMENTS	3-0-0:3	2015				
Ba	Course Prerequisites Basic knowledge of Heat transfer, Thermodynamics, Psychrometry, Material science and Manufacturing process at UG/PG Level							
Course O	Course Objectives The course is designed to provide a complete design knowledge of various heat transfer equipments which are invariably used in most of the chemical process industries.							
 Syllabus: Thermal performance analysis of heat exchangers - Design calculation of double pipe heat exchanger, LMTD, NTU and P-NTU Methods; Shell and tube heat exchangers- classification of shell and tube exchangers-The Circulating Water System-Introduction-System Classification-Wet Cooling Towers-Dry cooling towers- Heat Pipes Types and Applications-Capillary Limitation and Temperature Characteristics - Sonic, Entrainment, and Boiling Limitations- Heat pipe design – Fluid, Wick and Material Selection-Heat Pipe Design Procedure-Design Problems. Expected Outcomes This subject exposes students to the practical applications of the fundamental laws using thermodynamics, Heat transfer, Material sciences and Manufacturing processes. This course will provide a gist of the theory behind the heat transfer equipment and will emphasize direct applications of theory to design. References References R K Shah, Fundamentals of Heat Exchanger Design, John Wiley & Sons. Chi, S. W., Heat Pipe Theory and Practice - A Source Book, McGraw-Hill, 1976 Reay, D. A., Kew, P.A., Heat pipes, fifth edition, Butterworth-Heinemann publications, 2006. Fraas, A. P., Heat Exchanger Design, Second Edition, John Wiley & Sons, 1989. Dunn, P. D. and Reay, D. A., Heat Pipes, Fourth Edition, Pergamon Press, 1994. El Wakil., Power Plant Technology, McGraw Hill. 								
		Course Plan						
Module		Content	Contract hours	Semester Exam Marks (%)				
Ι	Appli Therm cross coeffi annul	Exchangers: Meaning, Classification, Significance, cations and Selection. nal Performance Analysis of Heat Exchangers: compact, flow, liquid to gas, and double pipe heat exchangers, film cients for tubes and annuli, the equivalent diameter of i, fouling factors, caloric or average fluid temperature, emperature difference.	8	15				
II	-	calculation of double pipe heat exchanger: LMTD, NTU NTU Methods.	8	15				
		First Internal Examination						
111	exchang		8	15				
IV	Classifi	Circulating Water System: Introduction-System cation-The Circulation System-Wet Cooling Towers- oling Tower Calculations-Dry cooling towers.		15				
		Second Internal Examination						

Sonic, Entrainment and Boiling Limitations: Introduction Sonic Limitation-Entrainment Limitation-Boiling Limitation Heat Pipe Design – Fluid selection- Wick selection- Material VI selection- Preliminary Design Considerations. 9 20 Heat Pipe Design Procedure: Introduction- Heat Pipe Diameter- Design of Heat Pipe Containers- Wick design. Entertainment and Boiling limitations-Design Problems.	V	Heat Pipe Types and Applications: Heat pipe invention and Operating principles-Working fluids-Wick structures-Control Techniques-Applications Capillary Limitation and Temperature Characteristics: Pressure balance- Maximum capillary pressure-Liquid and Vapor pressure drops- Effective thermal conductivity of wick structures- Capillary limitation on heat transport capability-Heat	9	20
End Semester Cluster Level Examination	VI	Limitation-Entrainment Limitation-Boiling Limitation Heat Pipe Design – Fluid selection- Wick selection- Material selection- Preliminary Design Considerations. Heat Pipe Design Procedure: Introduction- Heat Pipe Diameter- Design of Heat Pipe Containers- Wick design. Entertainment and Boiling limitations-Design Problems.	9	20

Course	No.	Course Name	L-T-l Credi		Year of Introduction				
10ME65	514	ENERGY EFFICIENT BUILDINGS	3-0-0		2020				
			3-0-0		2020				
Course Prerequisites Basic knowledge of heat transfer.									
	Course Objectives								
	1. To learn the concepts of the green building applicable to modern buildings.								
	2. Acquaint students with the principle theories, materials, construction techniques and create								
	energy-efficient buildings								
	3. Earn the knowledge of human comfort factors								
4. Syllabus	10 lea	n the concepts of building energy management							
•	rchited	ture, Energy efficient building concepts, Natural ventil	lation, r	assive o	cooling and				
0		nsfer in buildings, Estimation of building loads, Introdu	· 1		U				
systems in									
Expected									
		completion of the course, the students are expected to							
	-	alize the methods for establishing energy-efficient build	dings.						
		een buildings for maximum human comfort	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	u officia	nt huildings				
		he knowledge on different climatic zones in establishing he concept of energy management in buildings.	g energ	y-efficie	ent buildings				
		the concept of energy management in bundings.							
Reference		and Rabi A., Heating and Cooling of Buildings: Desigr	n for Ff	ficiency	Mc Graw				
	, 1994			ficiency	, we olaw				
	,		ons, 200)3.					
		 Ursala Eicker, Solar Technologies for buildings, Wiley publications, 2003. Sodha M.S, Bansal, P. K., Kumar, A. and Malik, M. A. S., Solar Passive Buildings, Pergamon 							
	Press, New York, 1986.								
		v York, 1986.							
	uffie,	V York, 1986. W. Beckman, Solar Engineering of Thermal Processes.	, 4 th Edi						
5. Ener	uffie, ' rgy Co	V York, 1986. W. Beckman, Solar Engineering of Thermal Processes Inservation Building Codes; Bureau of Energy Efficient	, 4 th Edi						
5. Ener	uffie, ' rgy Co	V York, 1986. W. Beckman, Solar Engineering of Thermal Processes.	, 4 th Edi						
5. Ener	uffie, ' rgy Co	V York, 1986. W. Beckman, Solar Engineering of Thermal Processes Inservation Building Codes; Bureau of Energy Efficience on Energy Conscious Buildings (<u>http://mnre.gov.in</u>)	, 4 th Edi						
5. Ener	uffie, ' rgy Co	V York, 1986. W. Beckman, Solar Engineering of Thermal Processes Inservation Building Codes; Bureau of Energy Efficience on Energy Conscious Buildings (<u>http://mnre.gov.in</u>)	, 4 th Edi		iley.				
5. Ener 6. Han	uffie, ' rgy Co dbook	V York, 1986. W. Beckman, Solar Engineering of Thermal Processes Inservation Building Codes; Bureau of Energy Efficience on Energy Conscious Buildings (<u>http://mnre.gov.in</u>) Course plan Content	, 4 th Edi cy.	ition, W	iley. Semester				
5. Ener 6. Han	uffie, ' rgy Co dbook	 York, 1986. W. Beckman, Solar Engineering of Thermal Processes, inservation Building Codes; Bureau of Energy Efficiency on Energy Conscious Buildings (<u>http://mnre.gov.in</u>) Course plan Content action - Building Science and its significance, Building Science and Sci	, 4 th Edi cy. ilding	ition, W	iley. Semester Exam				
5. Ener 6. Han	uffie, ' rgy Cc dbook	 York, 1986. W. Beckman, Solar Engineering of Thermal Processes, inservation Building Codes; Bureau of Energy Efficiency on Energy Conscious Buildings (<u>http://mnre.gov.in</u>) Course plan Content Inction - Building Science and its significance, Buals, Indoor Environment, and Components of I 	, 4 th Edi cy. ilding indoor	ition, W	iley. Semester Exam				
5. Ener 6. Han	uffie, ' rgy Co dbook Introdu Materi Enviro	 V York, 1986. W. Beckman, Solar Engineering of Thermal Processes, onservation Building Codes; Bureau of Energy Efficiency on Energy Conscious Buildings (<u>http://mnre.gov.in</u>) Course plan Content Inction - Building Science and its significance, Buals, Indoor Environment, and Components of I nment. Quality of Indoor Environment. Convention 	, 4 th Edi cy. ilding indoor itional	ition, W	iley. Semester Exam				
5. Ener 6. Han	uffie, ' rgy Co dbook Introdu Materi Enviro versus	 York, 1986. W. Beckman, Solar Engineering of Thermal Processes, onservation Building Codes; Bureau of Energy Efficiency on Energy Conscious Buildings (<u>http://mnre.gov.in</u>) Course plan Content Inction - Building Science and its significance, Buals, Indoor Environment, and Components of I nment. Quality of Indoor Environment. Conven Energy Efficient buildings – Water, Energy, and 	, 4 th Edi cy. ilding indoor itional IAQ	ition, W	iley. Semester Exam Marks (%)				
5. Ener 6. Han Module	uffie, ' rgy Cc dbook Introdu Materi Enviro versus require	 York, 1986. W. Beckman, Solar Engineering of Thermal Processes, inservation Building Codes; Bureau of Energy Efficiency on Energy Conscious Buildings (http://mnre.gov.in) Course plan Content Inction - Building Science and its significance, Buals, Indoor Environment, and Components of I nment. Quality of Indoor Environment. Convent Energy Efficient buildings – Water, Energy, and ement analysis. Future building design aspects– Critical 	, 4 th Edi cy. ilding indoor itional IAQ	ition, W	iley. Semester Exam Marks (%)				
5. Ener 6. Han	uffie, ' rgy Co dbook Introdu Materi Enviro versus require resour	 York, 1986. W. Beckman, Solar Engineering of Thermal Processes, onservation Building Codes; Bureau of Energy Efficiency on Energy Conscious Buildings (<u>http://mnre.gov.in</u>) Course plan Content Inction - Building Science and its significance, Buals, Indoor Environment, and Components of I nment. Quality of Indoor Environment. Conven Energy Efficient buildings – Water, Energy, and 	, 4 th Edi cy. ilding indoor itional IAQ lity of	ition, W	iley. Semester Exam Marks (%)				
5. Ener 6. Han	uffie, ' rgy Cc dbook Introdu Materi Enviro versus require resourc Humai comfo	 York, 1986. W. Beckman, Solar Engineering of Thermal Processes, inservation Building Codes; Bureau of Energy Efficiency on Energy Conscious Buildings (http://mnre.gov.in) Course plan Content Inction - Building Science and its significance, Buals, Indoor Environment, and Components of I nment. Quality of Indoor Environment. Convent Energy Efficient buildings – Water, Energy, and ement analysis. Future building design aspects– Critications and needs of modern living. A Comfort-Thermal, Visual, Acoustical and Olfact.	, 4 th Edi cy. ilding indoor itional IAQ lity of actory	ition, W Hours 7	iley. Semester Exam Marks (%)				
5. Ener 6. Han	uffie, ' rgy Co dbook Introdu Materi Enviro versus require resourd Human comfo Ventil	 York, 1986. W. Beckman, Solar Engineering of Thermal Processes, inservation Building Codes; Bureau of Energy Efficiency on Energy Conscious Buildings (http://mnre.gov.in) Course plan Content Interior - Building Science and its significance, Buals, Indoor Environment, and Components of I nument. Quality of Indoor Environment. Convent Energy Efficient buildings – Water, Energy, and ement analysis. Future building design aspects– Critical ces and needs of modern living. A Comfort-Thermal, Visual, Acoustical and Olfart. 	, 4 th Edi cy. ilding indoor itional IAQ lity of actory water	ition, W	iley. Semester Exam Marks (%)				
5. Ener 6. Han	Introdu Materi Enviro versus require resource Human comfo Ventil bodies	 York, 1986. W. Beckman, Solar Engineering of Thermal Processes, onservation Building Codes; Bureau of Energy Efficiency on Energy Conscious Buildings (http://mnre.gov.in) Course plan Content action - Building Science and its significance, Bu als, Indoor Environment, and Components of I nment. Quality of Indoor Environment. Convent Energy Efficient buildings – Water, Energy, and ement analysis. Future building design aspects– Critical ces and needs of modern living. n Comfort-Thermal, Visual, Acoustical and Olfart. ation and its significance. Micro-climates –Shading, Building materials, Envelope heat loss and heat gai 	, 4 th Edi cy. ilding indoor itional IAQ lity of actory water	ition, W Hours 7	iley. Semester Exam Marks (%)				
5. Ener 6. Han	Introdu Materi Enviro versus require resource Human comfo Ventil bodies	 York, 1986. W. Beckman, Solar Engineering of Thermal Processes, Inservation Building Codes; Bureau of Energy Efficiency on Energy Conscious Buildings (http://mnre.gov.in) Course plan Content Inction - Building Science and its significance, Buals, Indoor Environment, and Components of I nment. Quality of Indoor Environment. Convent Energy Efficient buildings – Water, Energy, and ement analysis. Future building design aspects– Criticates and needs of modern living. n Comfort-Thermal, Visual, Acoustical and Olfact. ation and its significance. Micro-climates –Shading, Building materials, Envelope heat loss and heat gai luation, paints, Insulation, Design Methods and tools. 	, 4 th Edi cy. ilding indoor itional IAQ lity of actory water	ition, W Hours 7	iley. Semester Exam Marks (%)				
5. Ener 6. Han	uffie, ' rgy Co dbook Introdu Materi Enviro versus require resour Human comfo Ventil bodies its eva	 York, 1986. W. Beckman, Solar Engineering of Thermal Processes, Inservation Building Codes; Bureau of Energy Efficient on Energy Conscious Buildings (<u>http://mnre.gov.in</u>) Course plan Content Internet Content Internet Convention of Indoor Environment, and Components of I nument. Quality of Indoor Environment. Convent Energy Efficient buildings – Water, Energy, and ement analysis. Future building design aspects– Critical ces and needs of modern living. A Comfort-Thermal, Visual, Acoustical and Olfart. A Building materials, Envelope heat loss and heat gai luation, paints, Insulation, Design Methods and tools. 	, 4 th Edi cy. ilding indoor itional IAQ lity of actory water n and	ition, W Hours 7	iley. Semester Exam Marks (%)				
5. Ener 6. Han	Introdu Materi Enviro versus require resource Human comfo Ventil bodies its eva	 York, 1986. W. Beckman, Solar Engineering of Thermal Processes, inservation Building Codes; Bureau of Energy Efficient on Energy Conscious Buildings (http://mnre.gov.in) Course plan Content Internet Content Indoor Environment, and Components of I nergy Efficient buildings – Water, Energy, and ement analysis. Future building design aspects – Critical ces and needs of modern living. In Comfort-Thermal, Visual, Acoustical and Olfart. Building materials, Envelope heat loss and heat gai luation, paints, Insulation, Design Methods and tools. First Internal Examination g concept -Passive Heating - Direct Gain, Indirect 	, 4 th Edi cy. ilding indoor itional IAQ lity of actory water n and Gain,	ition, W Hours 7 7 7	Semester Exam Marks (%) 15				
5. Ener 6. Han	uffie, ' rgy Cc dbook Introdu Materi Enviro versus require resourc Human comfo Ventil bodies its eva Heatin Isolate	 York, 1986. W. Beckman, Solar Engineering of Thermal Processes, Inservation Building Codes; Bureau of Energy Efficient on Energy Conscious Buildings (<u>http://mnre.gov.in</u>) Course plan Content Internet Content Internet Convention of Indoor Environment, and Components of I nument. Quality of Indoor Environment. Convent Energy Efficient buildings – Water, Energy, and ement analysis. Future building design aspects– Critical ces and needs of modern living. A Comfort-Thermal, Visual, Acoustical and Olfart. A Building materials, Envelope heat loss and heat gai luation, paints, Insulation, Design Methods and tools. 	, 4 th Edi cy. ilding indoor itional IAQ lity of actory water n and Gain, oling-	ition, W Hours 7	iley. Semester Exam Marks (%)				

	daylighting.		
IV	Climate zones – Introduction, Climatic zones and their characteristics, Factors affecting climate, Implications of climate on building design- Urban climate. Surface co-efficient- air cavity, internal and external surfaces, overall thermal transmittance, wall and windows.	7	15
	Second Internal Examination		
V	Heat transfer due to ventilation/infiltration, internal heat transfer; Decrement factor; Phase lag. Estimation of building loads: Steady-state method, network method, numerical method, correlations; Computer packages for carrying out the thermal design of buildings and predicting performance.	7	20
VI	 Roof radiation traps, Earth air tunnel, Solar water heating, Small wind turbines, Stand-alone PV systems, Hybrid system – Economics. Energy Management of Buildings - Energy Audit of Buildings, Energy Management matrix monitoring and targeting. 	7	20

Cours	e Course Name		Γ-P: edits	Year of Introduction					
<u>No.</u>	522 STATISTICAL METHODS FOR EXPERIMENTAL DESIGN		-0: 3	2020					
Course Prerequisites Basic knowledge of probability and statistics									
Course O	Course Objectives								
	 To make the student able to design experiments and analyze the results statistically. To build statistical models for real-world problems 								
Confidenc Factorial factorial d									
	mpletion of this course, the students will be able to aduct statistical hypothesis tests on mean and variance								
	nduct factorial experiments								
	sign experiments								
	mate model parameters for experimental design expression provides the second s								
 Mon Mon Will Kriss 	 References Montgomery, D. C. Design and analysis of experiments, John Wiley, New York, 2001. Montgomery, D. C. & Runger, G. C. Applied Statistics and Probability for Engineers, John Wiley, New York, 2007. Krishnaiah, K. & Shahabudeen, P. Applied Design of Experiments and Taguchi Methods, PHI, 								
4. Geo	Delhi 2012. rge, E. P., J. S. Hunter and W. G. Hunter. Statistics for ex	periment	ters: desi	gn, innovation,					
Course P	discovery, John Wiley, New York 2005. lan								
Module	Content		Hours	Semester Exam Marks (%)					
Ι	Introduction to Design of Experiments: One factor at experiments and designed experiments; Role of I experimentation; Application of software packag designing experiments. Basic statistical concepts: Probability distributions, pdf mean and variance; Normal and t distributions, probability plot; tables and chart to represent data, St leaf, Box plot, Pareto chart.	DoE in ges for and cdf, Normal	7	15					
П	Sampling distribution: Central limit theorem, Construc confidence intervals. Hypothesis testing: Hypothesis testing of single means, of two means, with known and unknown population va Paired t-test; Testing of variances.	testing	7	15					
	First Internal Examination	L							
III	Single-factor experiments: Analysis of Variance; Corrandomized design; Replication, Randomization, B Randomized complete block design; Latin square design adequacy checking, residual plots.	locking;	7	15					

	experiment	1	15
	Second Internal Examination		
V	Two-level factorial design: 2^{k} full factorial experiments, Effects and contrasts; Yate's algorithm; Single replicate case; Addition of central points to the 2^{k} design; Blocking and confounding in the 2^{k} factorial design.	7	20
VI	Fractional factorial designs: 2-level fractional factorial experiments; Alias structures in fractional factorial designs; Design resolutions; Response Surface Methods and Designs; Taguchi designs	7	20

10ME6524 ENERGY STORAGE TECHNOLOGIES 3-0-0: 3 20 Course Prerequisites Basic knowledge in thermodynamics, fluid mechanics and heat transfer Course Objectives 1 Enable students to appreciate the need for energy storage. 2 Impart concepts of various energy storage methods like chemical, thermal, batteries and innovative methods of energy storage. 3 Enable the students to choose the most appropriate energy storage method based on tecl economic and environmental aspects. Syllabus The necessity of energy storage, Chemical Energy storage, Thermal storage, Fundamental con batteries, Fuel Cell, PCM, Pumped storage, Concept of Hybrid Storage Expected Outcomes After the completion of the course the student should be able to: 1 Describe the various Chemical and Thermal Energy storage systems. 3 Use fuel cells for various industrial applications 4 Introduce the use of special materials for effective energy storage systems. 4 Select appropriate energy storage systems based on technical and economic consideration Wiley & Sons 2002. 2 S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. 3 Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 4 4 Alfrer Rufer, Energy Storage Systems and components, CRC Press, 2017 5 3	l other nnology,					
 Basic knowledge in thermodynamics, fluid mechanics and heat transfer Course Objectives Enable students to appreciate the need for energy storage. Impart concepts of various energy storage methods like chemical, thermal, batteries and innovative methods of energy storage. Enable the students to choose the most appropriate energy storage method based on tecl economic and environmental aspects. Syllabus The necessity of energy storage, Chemical Energy storage, Thermal storage, Fundamental corbatteries, Fuel Cell, PCM, Pumped storage, Concept of Hybrid Storage Expected Outcomes After the completion of the course the student should be able to: Describe the various Chemical and Thermal Energy storage systems. Use fuel cells for various industrial applications Introduce the use of special materials for effective energy storage systems. Select appropriate energy storage systems based on technical and economic consideration Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal Collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2012. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevia Publications, 1998 	nnology,					
 Course Objectives Enable students to appreciate the need for energy storage. Impart concepts of various energy storage methods like chemical, thermal, batteries and innovative methods of energy storage. Enable the students to choose the most appropriate energy storage method based on tecl economic and environmental aspects. Syllabus The necessity of energy storage, Chemical Energy storage, Thermal storage, Fundamental corbatteries, Fuel Cell, PCM, Pumped storage, Concept of Hybrid Storage Expected Outcomes After the completion of the course the student should be able to: Describe the various Chemical and Thermal Energy storage systems. Apply the principles of Electro-Chemical Batteries to design effective storage systems. Use fuel cells for various industrial applications Introduce the use of special materials for effective energy storage systems. Select appropriate energy storage systems based on technical and economic consideratic References Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Application Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shilu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevie Publications, 1998 	nnology,					
 Enable students to appreciate the need for energy storage. Impart concepts of various energy storage methods like chemical, thermal, batteries and innovative methods of energy storage. Enable the students to choose the most appropriate energy storage method based on tecl economic and environmental aspects. Syllabus The necessity of energy storage, Chemical Energy storage, Thermal storage, Fundamental cor batteries, Fuel Cell, PCM, Pumped storage, Concept of Hybrid Storage Expected Outcomes After the completion of the course the student should be able to: Describe the various Chemical and Thermal Energy storage systems. Apply the principles of Electro-Chemical Batteries to design effective storage systems. Use fuel cells for various industrial applications Introduce the use of special materials for effective energy storage systems. Select appropriate energy storage systems based on technical and economic consideratii References Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Application Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shilu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevid Publications, 1998	nnology,					
 Impart concepts of various energy storage methods like chemical, thermal, batteries and innovative methods of energy storage. Enable the students to choose the most appropriate energy storage method based on tecl economic and environmental aspects. Syllabus The necessity of energy storage, Chemical Energy storage, Thermal storage, Fundamental conbatteries, Fuel Cell, PCM, Pumped storage, Concept of Hybrid Storage Expected Outcomes After the completion of the course the student should be able to: Describe the various Chemical and Thermal Energy storage systems. Apply the principles of Electro-Chemical Batteries to design effective storage systems. Use fuel cells for various industrial applications Introduce the use of special materials for effective energy storage systems. Select appropriate energy storage systems based on technical and economic consideration Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. 	nnology,					
 innovative methods of energy storage. Enable the students to choose the most appropriate energy storage method based on tecl economic and environmental aspects. Syllabus The necessity of energy storage, Chemical Energy storage, Thermal storage, Fundamental con batteries, Fuel Cell, PCM, Pumped storage, Concept of Hybrid Storage Expected Outcomes After the completion of the course the student should be able to: Describe the various Chemical and Thermal Energy storage systems. Apply the principles of Electro-Chemical Batteries to design effective storage systems. Use fuel cells for various industrial applications 	nnology,					
 Enable the students to choose the most appropriate energy storage method based on tecl economic and environmental aspects. Syllabus The necessity of energy storage, Chemical Energy storage, Thermal storage, Fundamental conbatteries, Fuel Cell, PCM, Pumped storage, Concept of Hybrid Storage Expected Outcomes After the completion of the course the student should be able to: Describe the various Chemical and Thermal Energy storage systems. Apply the principles of Electro-Chemical Batteries to design effective storage systems. Use fuel cells for various industrial applications Introduce the use of special materials for effective energy storage systems. Select appropriate energy storage systems based on technical and economic consideration Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. 						
 economic and environmental aspects. Syllabus The necessity of energy storage, Chemical Energy storage, Thermal storage, Fundamental conbatteries, Fuel Cell, PCM, Pumped storage, Concept of Hybrid Storage Expected Outcomes After the completion of the course the student should be able to: Describe the various Chemical and Thermal Energy storage systems. Apply the principles of Electro-Chemical Batteries to design effective storage systems. Use fuel cells for various industrial applications Introduce the use of special materials for effective energy storage systems. Select appropriate energy storage systems based on technical and economic consideration Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. 						
 Syllabus The necessity of energy storage, Chemical Energy storage, Thermal storage, Fundamental conbatteries, Fuel Cell, PCM, Pumped storage, Concept of Hybrid Storage Expected Outcomes After the completion of the course the student should be able to: Describe the various Chemical and Thermal Energy storage systems. Apply the principles of Electro-Chemical Batteries to design effective storage systems. Use fuel cells for various industrial applications Introduce the use of special materials for effective energy storage systems. Select appropriate energy storage systems based on technical and economic consideration Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. 	ncept of					
 The necessity of energy storage, Chemical Energy storage, Thermal storage, Fundamental conbatteries, Fuel Cell, PCM, Pumped storage, Concept of Hybrid Storage Expected Outcomes After the completion of the course the student should be able to: Describe the various Chemical and Thermal Energy storage systems. Apply the principles of Electro-Chemical Batteries to design effective storage systems. Use fuel cells for various industrial applications Introduce the use of special materials for effective energy storage systems. Select appropriate energy storage systems based on technical and economic consideration Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2012. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevic Publications, 1998 	ncept of					
 After the completion of the course the student should be able to: Describe the various Chemical and Thermal Energy storage systems. Apply the principles of Electro-Chemical Batteries to design effective storage systems. Use fuel cells for various industrial applications Introduce the use of special materials for effective energy storage systems. Select appropriate energy storage systems based on technical and economic consideration Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publicorporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevic Publications, 1998 						
 After the completion of the course the student should be able to: Describe the various Chemical and Thermal Energy storage systems. Apply the principles of Electro-Chemical Batteries to design effective storage systems. Use fuel cells for various industrial applications Introduce the use of special materials for effective energy storage systems. Select appropriate energy storage systems based on technical and economic consideration Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevier Publications, 1998 						
 Describe the various Chemical and Thermal Energy storage systems. Apply the principles of Electro-Chemical Batteries to design effective storage systems. Use fuel cells for various industrial applications Introduce the use of special materials for effective energy storage systems. Select appropriate energy storage systems based on technical and economic consideration References Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Application Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevic Publications, 1998 						
 Use fuel cells for various industrial applications Introduce the use of special materials for effective energy storage systems. Select appropriate energy storage systems based on technical and economic consideration References Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Application Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevier Publications, 1998 						
 Introduce the use of special materials for effective energy storage systems. Select appropriate energy storage systems based on technical and economic consideration References Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Application Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevier Publications, 1998 						
 Select appropriate energy storage systems based on technical and economic consideration References Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Application Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevier Publications, 1998 						
 References Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Application Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevic Publications, 1998 						
 Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Application Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevic Publications, 1998 	ons.					
 Wiley & Sons 2002. S. P. Sukhatme, Solar Energy - Principles of thermal collection and storage, second edi Tata McGraw-Hil, New Delhi, 1996. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevic Publications, 1998 						
 Tata McGraw-Hil, New Delhi, 1996. 3. Schmidt F.W and Willmott. A. J., Thermal Storage and Regeneration, Hemisphere Publ Corporation, 1981 4. Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 5. James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 6. Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. 7. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevier Publications, 1998 						
 Corporation, 1981 Alfred Rufer, Energy Storage Systems and components, CRC Press, 2017 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevie Publications, 1998 	tion,					
 James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2 Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevie Publications, 1998 	ishing					
 Ru-shiliu, Leizhang and Xueliang sun, Electrochemical technologies for energy storage conversion, Wiley publications, 2012. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevie Publications, 1998 						
 conversion, Wiley publications, 2012. 7. Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevie Publications, 1998 						
 Power Sources for Electric Vehicles, Edited by B.D. Mc Nicol and D.A.J. Rand, Elsevie Publications, 1998 	and					
Publications,1998						
	r					
o. Liunum Dauches for Hydria Cars by John Voelcker, IEEE Spectrum, 1990.						
	۶B					
Reddy, McGraw Hill Book Company, N.Y. 2002.	9. Hand Book of Batteries and Fuel cells, 3rd Edition, Edited by David Linden and Thomas.B.					
10. Viswanathan, B. and Scibioh, Aulice M, Fuel Cells, Principles and Applications, University						
Press, 2006.	rsities					
Course Plan	rsities					
	rsities					
	ersities nester					
The necessity of energy storage – types of energy storage –						
comparison of energy storage technologies – Applications.	nester xam					
General consideration, petroleum product storages, LPG storages,	nester xam					
I LNG storages, hydrogen storages, toxic storages, chlorine storages, 6	nester xam rks (%)					
ammonia storages, other chemical storages – underground storages–	nester xam					
loading and unloading facilities-drum and cylinder storage -	nester xam ·ks (%)					
warehouse, storage hazard assessment of LPG and LNG	nester xam ·ks (%)					

II	Thermal storage – Types – Modelling of thermal storage units – Simple water and rock bed storage system – pressurized water storage system – Modelling of phase change storage system – Simple units, packed bed storage units -Modelling using the porous medium approach.	8	15		
	First Internal Examination				
III	The fundamental concept of batteries – measuring of battery performance, charging and discharging of a battery, storage density, energy density, Free energy, theoretical cell voltage, specific capacity, specific energy, energy density, memory effect, cycle life, shelf life, state of charge (SOC) and depth of discharge (DOD), internal resistance and Coloumbic efficiency and safety issues. Types of batteries – Primary and secondary batteries -Lead Acid, Nickel – Cadmium, Zinc Manganese dioxide and modern batteries for example (i) zinc-Air (ii) Nickel Hydride, (iii) Lithium Battery	8	15		
IV	Fuel Cell – History of the Fuel cell, Principles of Electrochemical storage – Types – Hydrogen oxygen cells, Hydrogen air cell, Hydrocarbon air cell, alkaline fuel cell, detailed analysis – advantage and drawback of each type. Fuel cell outlook, Applications of fuel cells – Industrial and commercial.	6	15		
Second Internal Examination					
V	Phase Change Materials, Pumped storage Energy Storage - Sensible, latent heat and thermo-chemical storage-pebble bed etc. materials for phase change-Glauber's salt-organic compounds. Solar ponds	7	20		
VI	Flywheel, Supercapacitors, Principles & Methods – Applications, Compressed air Energy storage, Concept of Hybrid Storage – Applications- Combustion Engine Hybrid Electric Vehicles, Laboratory Test of Electric Vehicle Batteries, Vehicle tests with Electric Vehicle Batteries, Future of Electric Vehicles.	7	20		

Course No.	Course Name	L-T-P: Credits	Year of Introduction				
10ME6508	MINI PROJECT	0-0-4: 2	2020				
Course Prerequisites The habit of reading technical magazines, conference proceedings and journals. Skills in hardware/software implementation techniques earned through UG studies. Seminar I 							
 Objectives 1. To support the problem-based learning approach and to enhance the reading habit among students 2. To enhance the skills regarding the implementation aspects of small hardware/software projects. 							
Guidelines	the skins regularing the implementation aspects of st		neware projects.				
faculty member. recommended th 4 th semesters. Th can be utilized in suggest a possib mini project can implementing pr institute/ researct and inter-institut research organiz based learning st Expected Outco On successful co 1. Compare to 2. Apply the 3. Analyse p References	s to do a mini project related to the branch of special It has to be approved by a committee constituted be at the same faculty member may serve as his/her Pro- ne mini-project is conceptualized in such a way that, so the selection of the thesis. Hence on completion of t le list of their thesis topic in the second semester its be a software and/or hardware-based one. Mini pro- oblem-based learning. Problems of social relevance and h organizations/ industry/ state should be given high p- tional projects, a student can have co-guide (s) from trategies. References cited shall be authentic. Dimes completion of the course, the student will be able to the different strategies to be adopted for carrying out p- knowledge and skills gained into carrying out the mai roblems chosen for the main Project.	by the institute of ject Supervisor some the outcom he mini project, welf. The implem oject is envisage nd/or problems i riority. In such i n another depart ciplinary project	concerned. It is during the 3 rd & nes of the work the student can nentation of the ed as a way for dentified by the nterdisciplinary ment/ institute/ ts and problem				
 York, 1994 Schank Fr., Theories of Engineering Experiments, Tata McGraw Hill Publication. Douglas C Montgomery, Design and analysis of experiments, Wiley International, 2013 Leedy P D, Jeanne Ellis Ormrod, Practical Research: Planning and Design, 12th Illustrated Edition, Pearson, 2019 							
Itore	Course plan	T *					
Item	Course Plan	Time					
I Abstra	ct Submission	2 week	s				
II Allotn	nent of Topic	1 week					
III Prelim	inary Presentation Session	1 week					
IV Impler	nentation Phase	9 week	s				
V Final I	Presentation-cum Demonstration	1 week					

Cour	se No.	Course Name	L-T-P: Credits	Year of Introduction
10MI	E6512	ENERGY SIMULATION LAB	0-0-2:1	2020
Cours Nil	e Prerequi	isites		
Cours	e Objectiv	'es		
		y shall primarily address the practical aspects of	the key areas of	f modeling and
		ysis of various energy systems using appropriate so		C
Expec	ted Outcon	mes		
To ena	ble the stu	dents to		
		fferent energy-related problems with appropriate ini		
		Numerical tools for solving the problems using hig		
3.	•	he results using high-speed computers and commerce	cial software or b	by computer
	coding.			
		an energy system by the parametric study.		
	Experime		ation using Crust	. Т
1.	software	of a gas turbine powerplant and performance evalu	ation using Cycl	e Tempo
С		of a steam turbine powerplant and performance eva	Justion using C	vala Tampa
۷.	software	of a steam turbine powerprant and performance eva		cie rempo
3		of a Combined Cycle powerplant and performance	evaluation using	Cycle Tempo
5.	software	of a combined cycle powerplant and performance	evaluation using	, cycle reliipo
4.		of Nonconventional energy systems like geotherma	al powerplant. G	asifier. Fuel Cel
	0	erformance evaluation using Cycle Tempo software	T T	
5.	-	heat transfer analysis of fluid flow over a plate usin		t
		heat transfer analysis of pipe flow using ANSYS Fl	0	
		n and parametric variation of thermal systems using		
8.	Data pred	iction of energy systems by ANN using MATLAB	-	
9	Optimizat	tion of energy systems by Genetic Algorithm using	ΜΑΤΙ ΑΒ	

SEMESTER 3

Course No.	Course Name	L-T-P: Credits	Year of Introduction				
10ME7505	WIND ENERGY TECHNOLOGIES	3-0-0: 3	2020				
-	Course Prerequisites						
	e of engineering mechanics and electrical engineering						
Course Objecti							
To enable the st							
	nderstanding of the wind energy potential and its conve	ersion system	ns.				
	ate the design principles of wind turbine blades. nderstanding of the generators for wind energy converse	ion					
	dern wind turbine control.	1011.					
Syllabus							
•	asics, Betz limit, Airfoil terminology, Blade element	theory Gr	id Synchronization				
•••	ors for wind energy systems, Details of Pitch System &	•	•				
		Control Al	gonums.				
Expected Outco							
	npletion of the course, the student will be able to						
-	e potential of wind energy and its conversion systems						
0	e wind turbine blades ie electrical systems and generators for wind energy con	vorsion					
	e control of modern wind turbines.						
REFERENCES							
	well, J. G. McGowan and A. L. Rogers, Wind Energy I	Typlained_ 7	Theory Design and				
	on, 2 nd Edition, John Wiley & Sons Ltd, 2009		Theory, Design and				
	Hansen, Aerodynamics of Wind Turbines, 3 rd Edition, E	Earth scan. 2	015				
	ichi, H. D. Battista and R. J. Mantz, Wind Turbine Con						
	and Gain Scheduling Design, Springer, 2007.	5	1 /				
4. L .L. Frer	is, Wind Energy Conversion Systems, Prentice-Hall, 19	90.					
5. D. A. Spe ASME Pr	ra, Wind Turbine Technology: Fundamental concepts o	f Wind Tur	bine Engineering,				
	prensen and Jens N Sorensen, Wind Energy Systems, W	ood head P	ublishing Ltd.				
2011.							
7. Kaldellis	J. K., Stand – alone and Hybrid Wind Energy Systems,	CRC Press,	2010.				
8. Mario Ga	rcia –Sanz, Constantine H. Houpis, Wind Energy Syster	ns, CRC Pr	ess 2012				
	ndsted, <u>Rogier P. L. Nijssen</u> , Advances in Wind Turbir	e Blade De	sign and Materials				
,Wood he	ad Publishing Ltd, 2013						
	Course Plan						
			Semester				
Module	Content	Hours	Exam Marks				
		•	(%)				
	Energy Basics, Wind Speeds and scales, Terra						
-	nness, Wind Mechanics, Power Content, Class of wi						
turbin			15				
	mentation for wind measurements, Wind data analystion, the wind rose diagrams, Wind resource estimation		15				
	Limit, Turbulence Analysis. Beaufort number -G						
	eters, wind type, power-law index -Betz constant, Terra						
Paralli	50						

	value.		
П	Airfoil terminology, Blade element theory, Blade design, Rotor performance and dynamics, Balancing technique (Rotor & Blade), Types of loads; Sources of loads Vertical Axis Type, Horizontal Axis, Constant Speed Constant Frequency, Variable speed Variable Frequency, UpWind, Down Wind, Stall Control, Pitch Control, Gear Coupled Generator type, Direct Generator Drive /PMG/Rotor Excited Sync Generator.	7	15
	First Internal Examination		
III	Electronics Sensors/Encoder/Resolvers, Wind Measurement - Anemometer & Wind Vane, Grid Synchronization System, Soft Starter, Switchgear, Transformer, Cables and assembly, Compensation Panel, Programmable Logic Control, UPS, Yaw & Pitch System - AC Drives, Safety Chain Circuits, Generator Rotor Resistor controller, Differential Protection Relay for Generator, Battery/Super Capacitor Charger & Batteries/ Super Capacitor for Pitch System, Transient Suppressor/Lightning Arrestors, Oscillation & Vibration Sensing.	7	15
IV	Generators for wind energy conversion systems - Squirrel Induction generators, Wound rotor Induction generators. Rotor resistance control.	7	15
	Second Internal Examination		
V	Doubly fed Induction generators - Principle and control, Permanent magnet Synchronous generators - Controlled Rectifiers, Capacitor Banks, Transformers and Inverters.	7	20
VI	Details of Pitch System & Control Algorithms, Protections used & Safety Consideration in Wind turbines, Wind Turbine Monitoring with Error codes, SCADA & Databases - Remote Monitoring and Generation Reports, Operation & Maintenance for Product Life Cycle, Balancing technique (Rotor & Blade), FACTS control & LVRT & New trends for new Grid Codes.	7	20

Cours	e No.	Course Name	L-T-P: Credits	Year of Introduction				
10ME	27507	WASTE MANAGEMENT AND ENERGY RECOVERY	3-0-0: 3	2020				
	Course Prerequisites							
		knowledge						
	Objective le the stud							
		sources and types of waste generation.						
		he methods of collection, transport and processing te	chnologies					
		nowledge of waste size reduction, hazardous waste n						
		technologies of waste processing and energy generation						
Syllabu								
Waste s	ources, co	omposition, properties, handling, size reduction, haza	ardous wastes,	waste				
manage	ment, and	l environmental impact assessment.						
Expecte	d Outcor	nes						
On succe	essful cor	npletion of the course, the student will be able to						
		e various sources of waste and waste management n	nethods					
		chnologies of waste handling and disposal						
		chnologies of energy generation from wastes						
		vironmental Impact Assessment of various types of p	pollution					
Referen								
		i L., Basics of Solid & Hazardous Waste Managemer	nt Technology.	Prentice Hall				
	999. 			-1-1'-1				
		R. R., Environmental Impact Assessment, New Age I	International P	iblishers (P) Ltd				
	012 orker Co	lin, & Roberts, Energy from Waste - An Evaluation of	of Conversion '	Tachnologias				
		pplied Science, London, 1985	of Conversion	recimologies,				
		nvironmental assessment and Management Ed. C. S.	Holling John	Wiley and Sons				
	005	invironmental assessment and Management Ed. C. S.	Honnig, John	whey and Sons				
		si and N. Abbasi, Renewable Energy Sources and Th	eir Environme	ntal Impact				
		all of India 2010						
		ental Impact Assessment L.W.Canter, McGraw Hill E	Book Company	1995				
		R. R., Environmental Impact Assessment, New Age I	1 •					
20	012							
		Course Plan						
				Semester				
Module		Content	Hours	Exam Marks				
				(%)				
		, generation and estimation, types, composit						
Ι		es - physical, chemical and biological. Collec		15				
		r stations, waste minimization, Recycling of muni-	cipal	_				
	wastes, regulations.							
		on, Transportation And Processing Techniques - o g, storage, processing, types of waste colled	otion					
II		isms, Transfer stations - types and location, Ma		15				
		ent separation and other separation techniques.						
	- compon	First Internal Examination						
	Size Re	duction - Aerobic Composting, Incineration for Me	dical					
III		ceutical Waste. Land Fill Method- Types, Method		15				
		onsideration. Composition. characteristics. genera						

	Control of landfill leachate & gases, an environmental monitoring system for landfill gases.			
IV	Hazardous Waste – definition, potential sources, impact on the environment, transportation regulations, risk assessment, remediation technologies. Private-public partnership, Government initiatives. Disposal of Hazardous Waste – Underground Storage Tanks Construction, Installation and Closure.	7	15	
	Second Internal Examination			
V	Managing wastes - Basics, types, working and typical conversion efficiencies of composting, anaerobic digestion, combustion, incineration, gasification, pyrolysis.	7	20	
VI	Environmental Impact Assessment - Production and assessment of impacts due to air and water pollution on the environment. Environment Impact Assessment in the land and biological environment. Environmental Effects due to Incineration	7	20	
	Cluster Level End Semester Examination			

Course	e No.	Course Name		Г-Р: edits	Year of Introduction			
10ME	7511	INDUSTRIAL NOISE CONTROL	3-0	-0:3	2020			
	Course Prerequisites Basic knowledge in physics and mathematics.							
	Course Objectives To enable the students to							
		sic knowledge in acoustics and industrial noise control.						
2. Be	familia	with the noise control measures used in industries.						
transmissi	damenta on loss,	ls of acoustics, wave equation, solutions, sound measur absorption coefficient, room acoustics, acoustic enclose d regulations.						
1. D 2. E	essful con escribe t stimate t	mes npletion of the course, the student will be able to he principles of acoustics he noise levels in various locations ne acoustic modes in rooms						
4. A 5. A	pply noi nalyse tl	se control measures in various engineering fields ne performance of different types of mufflers						
6. D		e latest norms on noise control.						
2. Cr 3. W	ocker, M illiams, l	ndall F. Industrial noise control and acoustics. CRC Pre lalcolm J., ed. Handbook of noise and vibration control Earl G. Fourier acoustics: sound radiation and nearfield Press, 1999.	l. Johi	n Wiley &				
		Course Plan						
Module		Content		Hours	Semester Exam Marks (%)			
Ι	energy	nentals: acoustic pressure, acoustic intensity, acoudensity, impedance, levels and decibels, a combinations, octave bands, weighted sound levels.		5	15			
II	field, f	equation, plane waves, spherical waves, solution, ar field, direct field, reverberant field, standing wa ity factor and directivity index.		7	15			
	Magan	First Internal Examination	arva1					
ш	Measurement: microphones, sound level meter, intensity level meter, octave band filters, acoustic analysers, dosimeter, measurement of sound power, measurement in a reverberant room, measurement in anechoic & semi-anechoic rooms, sound transmission and absorption, measurement using impedance tube.815							
		ement of sound power, measurement in a reverbe measurement in anechoic & semi-anechoic rooms, so ssion and absorption, measurement using impedance tu	ound ube.		15			
IV	Room absorpt level, 1	ement of sound power, measurement in a reverber measurement in anechoic & semi-anechoic rooms, so ssion and absorption, measurement using impedance tu acoustics: acoustic modes, mechanism of sur ion, surface absorption coefficients, steady-state so everberation time, sound transmission from an adja acoustic enclosures, acoustic barriers.	ound ube. face ound	6	15			
IV	Room absorpt level, 1 room, a	ement of sound power, measurement in a reverber measurement in anechoic & semi-anechoic rooms, so ssion and absorption, measurement using impedance to acoustics: acoustic modes, mechanism of sur ion, surface absorption coefficients, steady-state so everberation time, sound transmission from an adja	ound ibe. face ound icent					

	coefficient.		
VI	Noise sources & regulations - Fan noise, electric motor noise, noise from gears, pump noise, gas compressor noise, transformer noise, cooling tower noise, valve noise, air distribution system noise, traffic noise, train noise-Noise criteria for interior spaces, day-night level, EPA criteria, HUD criteria, aircraft noise criteria, OSHA regulations.	8	20
Cluster Level End Semester Examination			

Course No.	Course Name	L-T-P- Credits	Year of Introduction
10EE7107	ELECTRIC VEHICLE SYSTEMS	3 - 0 - 0: 3	2015
purposes; DC	lge of four-stroke and two-stroke engines, Various series, Slip ring IM, Basics of Electrical Drives, Fu	• •	
vehicles. Thi architectures,	etives designed to understand electric vehicles and to of s course will introduce general aspects of Elec modeling, sizing, vehicle control. It will cover v ic propulsion systems, power electronics design, an	tric Vehicles (ehicle dynamics	HEV), including
Ground Adhes Vehicle Power Internal Comb engines – Wa Brayton cycle	0	cactive Effort and erformance ression ignited e bine engines –	d Vehicle Speed ngines – 2 strok quasi isotherma
consumption Hybrid electric Electric propu motor drives – Parallel (Mec Methodology Daily Driving Transmission	les: configuration – performance – tractive effectives: series and parallel electric drive trains sion systems: DC motor drives – Induction motor of SRM drives – SRM design hanically Coupled) Hybrid Electric Drive Train of Series–Parallel (Torque and Speed Coupling) H Distance - Energy Management Strategy - En Regenerative Braking - Control Strategy for Optimuel Cell Hybrid Electric Drive Train Design - Pow	lrives – permane Design - Des Iybrid Drive Tr ergy Consumed nal Energy Reco	ent magnet BLD sign and Contro ain - Statistics of in Braking an very
Expected Out On successfu 1. Ident 2. Unde 3. Able avail 4. Prop elect	comes completion of the course, the student will be able to ify the various fundamentals in the traction design p rstand the various factors that influence the vehicle to design hybrid electric vehicle system depending able, energy management requirement, alternate fue ose various electric driving motors and Power el ical vehicle.	problems tractive power a g on the power r l system etc.	equirement, inpu
 Ehsani, Yir Electric Ve Batteries for Sources Tea Modern Ele Second Edi 	ectric Vehicles, Hybrid Electric and Fuel Cell Ve nin Gao, Ali Emadi – CRC Press nicle Technology Explained – James Larminie, John r Electric Vehicles (Electronic & Electrical Engi chnology) - D Rand - Wiley-Blackwell (21 January ectric, Hybrid Electric, and Fuel Cell Vehicles: Fu tion (Power Electronics and Applications Series) - ndardsmedia (2009)	n Lowry – John neering Researd 1998) ndamentals, The	Wiley & Sons ch Studies Powe eory, and Desigr

- Propulsion System for Hybrid Vehicle" 2nd Edition" by John M. Miller
 History of Electric Vehicles Bellis.

Course plan					
Module	Content	Hours	Semester Exam Marks(%)		
I	Fundamentals of Vehicle Propulsion and Brake: - Vehicle Resistance - Dynamic Equation - Tire–Ground Adhesion and Maximum Tractive Effort - Power Train Tractive Effort and Vehicle Speed - Vehicle Power Plant and Transmission Characteristics - Vehicle Performance.	6	15		
Π	Internal Combustion Engines – 4 stroke spark ignited and compression ignited engines – 2 stroke engines – Wankel rotary engines – Stirling engines – gas turbine engines – quasi isothermal Brayton cycle engines Electric vehicles: configuration – performance – tractive effort in normal driving – energy consumption Hybrid electric vehicles: series and parallel electric drive trains.	8	15		
	First Internal Examination				
III	Electric propulsion systems: DC motor drives – Induction motor drives – permanent magnet BLDC motor drives – SRM drives – SRM design	6	15		
IV	Parallel (Mechanically Coupled) Hybrid Electric Drive Train Design - Design and Control Methodology of Series-Parallel (Torque and Speed Coupling) Hybrid Drive Train - Statistics of Daily Driving Distance	8	15		
	Second Internal Examination				
V	Energy Management Strategy - Energy Consumed in Braking and Transmission - Regenerative Braking - Control Strategy for Optimal Energy Recovery Fuel Cells -	8	20		
VI	Fuel Cell Hybrid Electric Drive Train Design - Power and Energy Design of Energy Storage.	6	20		
Total		42	100		
	Cluster Level End Semester Examination				

	No. Course Name	L-T-P-	Year of			
Course N	to. Course Mame	Credits	Introduction			
10ME75	ENERGY, ENVIRONMENT AND	3-0-0: 3	2020			
Course D	CLIMATE CHANGE					
Nil	rerequisites					
Course O	bjectives					
1. To	introduce the interrelationship between energy, ecology	and environn	nent			
2. To	detail on the sources of air, water and soil pollution and	l possible solu	tions for mitigating			
	eir degradation					
	impart knowledge on the atmosphere and its present co	ndition, globa	warming and eco-			
	gislations	C				
	elaborate on the technologies available for generating e	energy from wa	aste			
Syllabus Basic defi	nitions, link with ecology, resource classifications, Energy	w Transfor on	d Nutriant avaling			
	ental Impact of conventional resources, Alternate mitiga		• •			
	hal resources, air pollution, water pollution, soil pollution	-	0			
	radioactive waste pollution, global effects and climate cl	-	ation, e waste			
	Outcomes	8				
-	ssful completion of the course, the student will be able to)				
1. Di	scuss the interrelationship between energy, ecology and	environment				
	nderstand sources of air, water and soil pollution and pos		5			
	terpret the environmental impacts of energy technologies					
4. Ill	ustrate the issues related to climate change and related p	rotocols				
Reference		nd				
Pu	to C.S., Environmental Pollution Control Engineering, 2 ablishers, 2006.					
	lbert M. M., Wendell P. E., Introduction Environn	nental Engine	ering and Science,			
	entice Hall of India, 2008.	D 111				
	ehri J., Sustainability, Green Energy and Climate Chan	ige: Revisited,	Capital Publishing			
	ompany, 2016. Nevers, Air Pollution Control Engineering, McGraw Hi	311 2001				
	Anjaneyulu, Air pollution: Prevention and Control Tech		Publications 2020			
	M. Masters, W P Ela, Introduction to Environmental I	•				
	all, 3 rd Edition, 2007.	88				
	Course plan					
			Semester			
Module	Content	Hours	Exam Marks (%)			
	Energy Overview: Basics of energy, Types of energy an					
	utilization, Overview of global energy scenario, Fossil					
	Reserves -Estimates, Overview of India's energy scen		15			
	Examples for trends in energy use patterns, energy	and				
	development linkage	1				
	Fundamentals of environment; Water cycle, Oxygen cy					
	Carbon cycle, Nitrogen cycle, Phosphorous cycle, F cycle; Bio-diversity; Environmental aspects of en		15			
	utilization, Public health issues related to environme		15			
	Pollution, Carbon footprint and its measurement					
First Internal Examination						

III	Air Pollution: Classification of air pollutants, sources of emission and air quality standards, Physical and chemical characteristics, Meteorological aspects of air pollutant dispersion, Factors influencing dispersal of air pollutant, Air pollution dispersion models, Air pollution sampling and measurement, types, Ambient air sampling, Gaseous air pollutants, Particulate air pollutants, control methods of air pollution, Exhaust emission test, procedures, standards and legislation	7	15
IV	Water resources, water pollutants – characteristics, BOD, COD, TOC – quality, water treatment systems, waste water treatment, utilization and disposal of sludge, monitoring compliance with standards, measurement and control of water pollution.	7	15
	Second Internal Examination		
V	Sources and Classification of Solid waste, Hazardous waste, Characteristics, Collection and Transportation, Disposal, Processing and Energy Recovery, Environment impact assessment for various projects – case studies, Radioactive waste: types, sources, effects, control of radiation pollution, Pollution due to e-waste, Soil pollution- causes and effects, remedial solutions.	7	20
VI	Elements of climate - Climatic classifications, Possible causes of climate change, Causes and consequences of global warming, ozone hole and consequence of ozone depletion, Effects on oceans, Montreal protocol, Kyoto protocol and recent conventions, Strategies for conservation of environmental changes induced by CO ₂ rise, Concept of carbon sequestration; Future energy systems Cluster Level End Semester Examination	7	20

Course	e No.	Course Name	L-T-P: Credits	Year of Introduction				
10ME'	7515	ENERGY SYSTEMS MODELLING AND ANALYSIS	3-0-0:3	2020				
	Course Prerequisites Basic knowledge in thermodynamics, fluid mechanics, heat transfer and numerical analysis at the							
Course (Objectiv							
		students to ss and energy balances for the systems and to pe	rform the d	noign of Energy				
-	stems.	ss and energy balances for the systems and to pe		esign of Energy				
		accurate and efficient computational methods for the s	olution and o	ptimization of				
		tem models.						
Syllabus				1				
		ers the design process, mathematical modelling and nu	imerical simu	ilations,				
Expecte		deration and optimization of energy systems.						
-		mpletion of the course, the student will be able to						
		scientific knowledge to Model and Simulation a typic	al energy syst	em.				
	•	e effect of constraints on the performance of energy s						
		HEN and perform Energy-Economic Analysis for typi	cal application	ons.				
 Bej &S C. I Kaj Sto Yo, Yo, W. 	 Bejan A., Tsatsaronis G. and Moran M., Thermal Design and Optimization, John Wile &Sons 1996. C. Balaji, Essentials of Thermal System Design and Optimization, Aue Books, 2011. Kapur J. N., Mathematical Modeling, Wiley Eastern Ltd, New York, 1989. Stoecker W.F., Design of Thermal Systems, McGraw Hill, 2011. Yogesh Jaluria, Design and Optimization of Thermal Systems, CRC Press INC, 2008 							
		e: Analysis and Design of Thermal Systems, Prentice & M .Gopal: Systems Modelling and Analysis, Tata M		<i>)</i> ().				
	0	Globally Optimal Design, Wiley- Inter-Science, 1978						
		Course Plan						
Module		Content	Hours	Semester Exam Marks (%)				
Ι	volume energy model	v energy analysis - energy balance for closed and con systems - applications of energy analysis for select system design - modeling overview - levels and step development - Examples of models – curve fitting ion analysis.	cted s in 6	15				
Π	Expone solar c compor - soluti substitu	ng of energy systems – Mathematical modeli ential forms- Method of least squares, heat exchange collectors – distillation -rectification turbomachin nents - refrigeration systems - information flow diago on of set of non-linear algebraic equations - success ation – Newton -Raphson method- examples of energy	er - lery cam 8 sive	15				

systems simulation

III	Objectives - constraints, problem formulation - unconstrained problems - necessary and sufficiency conditions. Constrained optimization - Lagrange multipliers, constrained variations, Linear Programming - Simplex tableau, pivoting, sensitivity analysis.	8	15		
IV	Multiplier Analysis - Energy and Environmental Input / Output Analysis - Energy Aggregation – Econometric Energy Demand Modeling	6	15		
	Second Internal Examination				
V	New generation optimization techniques – Genetic algorithm and simulated annealing – examples, Overview of Econometric Methods - Dynamic programming - Search Techniques - Univariate / Multivariate	8	20		
VI	Case studies of optimization in Energy systems problems- Dealing with uncertainty- probabilistic techniques – Trade-offs between capital and energy using Pinch analysis	8	20		
	Cluster Level End Semester Examination				

Course	e No.	Course Name	L-T-P: Credits	Year of Introduction			
10ME'	7517	PROJECT MANAGEMENT	3-0-0: 3	2020			
Course Prerequisites Basic knowledge of Industrial Engineering or Management at the UG Level							
	Course Objectives:						
1. Tl	his cours	e examines project management in theory and practice	e and the ro	les and			
	-	ities of the project manager.					
		offers a practical approach to managing projects, foc	using on or	ganizing,			
	anning, a	nd controlling the efforts of the project.					
Syllabus	(D)		F 1 '				
		ct Management - Project Management Concepts and '					
		ct Planning and Scheduling- Resource-Constrained Sc	cheduling -	Project			
Expected		ontrol - Management of Special Projects.					
-		appletion of the course, the student will be able to					
		e principles of project management.					
		roject plan to lead a team					
		oject plans without cost and time overruns.					
	1	the procedure for implementing big and special proje	cts.				
Referenc							
1. Sht	ub, Bard	and Globerson, Project Management: Processes, Meth	nodologies,	and Economics,			
		e Hall Inc, 2005.					
		t Management Handbook, Gover Publishing Ltd, 198					
3. Cle	land and	King, Project Management Handbook 2 nd Edition, W	iley, 1988.				
		evy, A Management Guide to PERT/CPM, Prentice H ner, Project Management: A Systemic Approach to Pl					
		CBS Publishers, 2002.	anning, Sci	leuuning and			
		y, Project Scheduling and Monitoring in Practice, Sou	ith Asian P	ublishers, Delhi,			
198		,, <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, , , , ,			
		Course plan					
				Semester			
Module		Content	Hours	Exam			
				Marks (%)			
		tion to Project management, Characteristics o					
т		Definition and objectives of Project Management		15			
Ι		of Project Management, Project Planning Process ning Project organization, the role of Project Manager		15			
	Establis	ling Project organization, the role of Project Manager	-				
Project screening and Selection Techniques Structuring							
	Project	screening and Selection Techniques - Structurin	g				
	Project concepts	screening and Selection Techniques - Structuring and Tools - Work Breakdown Structure	-				
п	concepts Organisa	and Tools - Work Breakdown Structure ation Breakdown Structure, and Linear Responsibilit	с, У 8	15			
П	concepts Organisa Chart - 1	and Tools - Work Breakdown Structure ation Breakdown Structure, and Linear Responsibilit Project Planning Tools- Bar charts, Line of Balance	y 8	15			
Π	concepts Organiss Chart - I Critical	and Tools - Work Breakdown Structure ation Breakdown Structure, and Linear Responsibilit Project Planning Tools- Bar charts, Line of Balance Path Method, and Project Evaluation and Review	y 8	15			
II	concepts Organiss Chart - I Critical	and Tools - Work Breakdown Structure ation Breakdown Structure, and Linear Responsibilit Project Planning Tools- Bar charts, Line of Balance	y 8	15			
II	concepts Organiss Chart - Critical Techniq	and Tools - Work Breakdown Structure ation Breakdown Structure, and Linear Responsibilit Project Planning Tools- Bar charts, Line of Balance Path Method, and Project Evaluation and Review ue- Risk Analysis and Management First Internal Examination	-, y v v	15			
II	concepts Organiss Chart - I Critical Techniq	and Tools - Work Breakdown Structure ation Breakdown Structure, and Linear Responsibilit Project Planning Tools- Bar charts, Line of Balance Path Method, and Project Evaluation and Review ue-Risk Analysis and Management	-, y v v	15			

IV	Project Scheduling with Resource Constraints- Resource Leveling- Resource-constrained scheduling with multiple resources- linear programming formulation – Introduction to staff scheduling and rostering.	8	15		
	Second Internal Examination				
V	Monitoring Techniques and time control System- Project Cost Control -Time cost Tradeoff procedure, lowest cost schedule Computer applications in project management		20		
VI	Management of Software Engineering Projects, New Product Development Projects, R&D Projects and Large Scale Construction Projects - Case Studies		20		
	Construction Projects - Case Studies Cluster Level End Semester Examination				

Course	No.	Course Name	L-T-P: Credits	Year of Introduction				
10EE7	505	ELECTRICAL DRIVES AND CONTROL	3-0-0: 3	2020				
	Course Prerequisites Basic knowledge in Electrical Engineering at the UG level							
Course	e Obje	ctives						
1. U 2. U	 To enable the students to 1. Understand the principle of motor drives. 2. Understand the concept of Solid State motor controllers and their applications 							
Drives,	ction t Induc sis mo	o Electrical Drives, Power Electronic Converters for Mo tion Motor Drives, Synchronous motor drives, BLDC dr tor, Stepping and switched reluctance motor drives, Driv	ives, reluctan	ce motors,				
Expect		tcomes						
1. E2 2. E2 3. A4 4. A 5. A4 m 6. C1 Referen 1. Aus	 On successful completion of the course, the student will be able to Explain the principle of electrical motors. Explain the concept of Solid-State controllers and their applications Analyze DC motor drives Analyze induction motor drives Analyze Synchronous motor, BLDC motor, stepper motor, reluctance motor and hysteresis motor drives Choose appropriate drives and controllers for various applications References Austin Hughes, "Electric Motor & Drives", Newnes, 4/e, 2013. M. D. Singh and K.B. Khanchandani, "Power Electronics", Tata McGraw-Hill Education Ltd, 							
4. Ved Edu 5. Gop 6. R. K	am Su cation, al K. I	L., "A First Course on Electric Drives", Wiley Eastern La brahmanyam, "Electric Drives: Concepts & Application 2011. Dubey, "Fundamentals of Electric Drives", Narosa, 2/e, 2 an, "Electric Motor Drives – Modeling, Analysis and Co	s" 2/e, Tata M 2010.	lcGraw-Hill				
		Course Plan						
Module		Content	Hours	Semester Exam Marks (%)				
IBasics of electric motors, Magnetic flux density, Force on a conductor, Magnetic Circuits- Electric circuit analogy, Reluctance, Magnetic circuits in motors, torque production, Equivalent Circuit, General Properties of Electric Motors615								
II	D.C.	r Electronic Converters for Motor Drives- Voltage Con Output from D.C., D.C. from A.C., A.C. from hing Devices, Cooling of Power Switching Devices.		15				
	DC	First Internal Examination	Iront					
III	Opera Contr	Motor Drives- D.C. Motor Fundamentals, Four-Quad ation and Regenerative Braking, Thyristor D.C. Dr ol Arrangements for D.C. Drives, Chopper-Fed D.C. M s, D.C. Servo Drives, Digitally Controlled Drives.	ives, 6	15				

IV	Induction motors fundamentals, methods of starting induction motors, stable operating regions, influence of supply voltage on torque–speed curve, generating, doubly-fed induction machine for wind-power generation, braking, speed control, variable frequency operation of induction motors. Inverter-fed induction motor drives	8	15	
Second Internal Examination				
v	Synchronous motors- excited rotor and pm rotor, equivalent circuits of synchronous motors, constant-voltage, constant- frequency operation, variable-frequency operation, synchronous motor drives. BLDC drives, reluctance motors, hysteresis motors. Stepping and switched reluctance motors	8	20	
VI	Drive selection- power ratings and capabilities, drive characteristics, constant-torque load, fan and pump loads. closed- loop control- driving a car at a target speed. Steady-state analysis of closed-loop systems	6	20	
Cluster Level End Semester Examination				

Course	No.	Course Name		C - P - edits		Year of troduction
10ME75	OME7501 SEMINAR II 0 - 0 - 2: 2 2020					
 Course Prerequisites The habit of reading technical magazines, conference proceedings, journals etc. Knowledge in technical writing and communication skills earned through a seminar at the UG level and in the first semester The course Seminar I in the first semester Course Objectives To enable the students to 						
2. Ide 3. Est dis 4. De	ntify tablis cove velo	e the reading ability required to conduct a literature rev the Project Phase II topic. sh the fact that the student is not a mere recipient of idea ery and inquiry. p the skills of professional communication and technica p prepare and publish technical papers.	as, but a		-	in
Students i II may re Since the beginning towards the semester shall be committe coverage Moreover Institution which is learn how communi	Guidelines Students have to present the second seminar in 3 rd semester. It is highly recommended that Seminar II may report the literature survey being conducted as a requirement for doing the main project. Since the topic for the main project topic is to be finalized at the end of the second semester/at the beginning of the 3 rd semester, one can perform the literature search and present it as a seminar towards the middle of the semester. The Progress Evaluation Committee (PEC) formed in the second semester itself, may be the panel of evaluators for Seminar II also. The presentation of Seminar II shall be of 20 minutes duration with another 5 minutes allocated for a discussion session. The committee shall evaluate the seminar based on the style of presentation, technical context, and coverage of the topic, adequacy of references, depth of knowledge and the overall quality. Moreover, each student has to submit a seminar report in the prescribed format given by the Institution. It is recommended that the report for Seminar II may be in the form of a technical paper which is suitable for publishing in Conferences/Journals as a review paper. This makes a student learn how to publish a paper and consequently develops a publishing culture among the PG student					
 Expected Outcomes On successful completion of the course, the student will be able to Prepare a Review Paper out of the literature review. Identify the Project Phase II topic for M Tech thesis through literature review. Demonstrate the capacity to observe intelligently and propose and defend opinions and ideas with tact and conviction. Demonstrate the skills of professional communication and technical report writing. Apply the methodology of publishing technical papers. References M. Ashraf Rizvi, Effective Technical Communication, Tata Mc Graw Hill Education, New Delhi, Second Edition, 2017 						
2. Da	 Day R.A., How to Write and Publish a Scientific Paper, Greenwood Press, Seventh Edition, 2011 Coley S M and Scheinberg C. A., Proposal Writing, Sage Publications, Second edition, 2000 					
		Course plan				
Item		Description		Time	e	
1 A	Absti	act Submission 3 Weeks		3 Wee	ks	

1 Week

Allotment of Topic and Scheduling Seminars

2

3	Literature Review and Presentation Sessions	6 Weeks
4	Report Submission	3 Weeks
5	Publishing Grades	1 Week

Course No.	Course Name	L - T - P - Credits	Year of Introduction
10ME7503	PROJECT (PHASE I)	0-0-12:6	2020
 Interest in Skills in I semester 	of reading technical magazines, conference proceeding n solving socially relevant or research problems hardware/software implementation techniques earned fro	Ū.	
Course Object			
1. The stud Backgro fields.	ent is expected to finalise the thesis topic from the areas und studies towards the project have to be done through	a literature su	rvey in relevant
for the p 3. To devel	vill work on the topic, familiarize himself with the desig roject work and plan the experimental platform, if any, lop the skill of identifying research problems/socially re- nce the skills regarding the implementation aspects of sr	required for prolevant projects	oject work.
Guidelines			
the guidance of institute concer Supervisor duri the outcomes of phase, (S)he wi implementation phase is also e relevance and/o be given high p co-guide(s) fro encourages inte be authentic. Th 1. The stu 2. The stu 3. The first 4. A progn 5. The thi third se	is to identify the topic project (phase I) related to the brack a faculty member. It has to be approved by a committee rend. It is recommended that the same faculty member ing the semester also. This project phase is conceptualized of the work may be continued for thesis work. Hence Il make a presentation based on the work and suggest a in of this phase of the project can be software and/or envisaged as a way for implementing problem-based or problems identified by the institute/ research organiza- priority. In such interdisciplinary and inter-institutional perdisciplinary projects and problem-based learning stra- tice following guidelines also have to be followed. dent will submit a detailed project (phase I) report dent will present at least two seminars at seminar will highlight the topic, objectives and metho- ress seminar can be conducted in the middle of the seme rd seminar will be a presentation of the work they have a mester and the scope of the work which is to be accomp- ning the expected results.	e constituted by may serve as ed in such a wa on completion plan for his th hardware-base learning. Prob cations/ industr l projects, a stu ns/ industry. ' tegies. Referen dology ster completed till t	y the his/her Project by that, some of of this project hesis work. The d. This project blems of social ty/ state should udent can have The university nees cited shall
Expected Out	comes completion of the course, the student will be able to		
 Develop Develop effective 	the skill of identifying industrial/ research problems/soc skills regarding enumerating and selecting problems, su implementation of the solution.	•	
 Design th Plan the 	ne tools required for the project work experimental platform, if any, required for project work, al-life project planning	, which will be	helpful in

- Acquire documentation and problem-solving skills.
- 6. Develop professionalism.
- 7. Communicate technical information through written and oral reports.

References

- 1. J. W. Bames, Statistical Analysis for Engineers and Scientists, Mc Graw Hill, New York.
- 2. Schank Fr., Theories of Engineering Experiments, Tata McGraw Hill Publication.
- 3. Douglas C. Montgomery, Design and analysis of experiments, Wiley International
- 4. Leedy P. D., Practical Research: Planning and Design, 4th Edition, N W MacMillan Publishing Co.

	Course plan				
Item	Description	Time			
1	Abstract Submission	2 Week			
2	Allotment of Topic	1 Week			
3	Preliminary Presentation Sessions	1 Week			
4	Implementation Phase	9 Weeks			
5	Final Presentation-cum Demonstration	1 Week			

SEMESTER 4

Course No.	Course Name	L - T - P - Credits	Year of Introduction			
10ME7504	PROJECT (PHASE II)	0-0-23: 12	2020			
 Interer Skills Skills in sen Course Course Course Object To enable the It is exp To word To develop To develop To develop Guidelines Each student specified in F Hence on cordinations, institutional proganizations, institutional proganizations, learning strated The folloo The signified in F The signified in F A proposed for the signification of t	abit of reading technical magazines, conference proceed st solving in socially relevant or research problems in hardware/software implementation techniques earne nester1 e Seminar II & Research Methodology e PROJECT (Phase I)	d from UG and ased on Project mited time dance of a facu ted by the inst entation based of way for implem tified by the in tich interdiscipli department/ in ty projects and nodology nester ation of the wor ope for future wor resented before of work. This w	mini project (phase I) (phase I) (http://www.and enting problem- stitute/ research inary and inter- stitute/ research problem-based k they ork also the would be			
	l completion of the course, the student will be able to					
2. Formu program			ters of the			
4. Implen	1 1 1 3					
 6. Evaluate the problem in the Energy-related area in a scientific manner, by upholding Energy 						

conservation and environmental policies.

References

- 1. J. Wesley Barnes, Statistical Analysis for Engineers and Scientists, Mc Graw Hill, New York, 1994.
- 2. Schank Fr., Theories of Engineering Experiments, Tata McGraw Hill Publication.
- 3. Douglas C Montgomery, Design and analysis of experiments, Wiley International, 2013
- 4. Leedy P D, ,Jeanne Ellis Ormrod Practical Research: Planning and Design, 12th Illustrated Edition, Pearson, 2019

	Course plan				
Item	Description	Time			
(1)	Implementation Phase	10 Weeks			
(2)	Thesis Preparation	3 Weeks			
(3)	Final Internal Presentation-cum Demonstration	1 Week			
(4)	Evaluation by the External expert	4 Weeks			

ASSESSMENT CRITERIA

A. Evaluation of Theory Courses

KTU follows a continuous academic evaluation procedure. This includes two internal examinations and one end semester cluster level University examination. Besides, students should be given proper assignments/course seminars which are essential aspects of a student-centric teaching approach. The continuous assessment procedure and corresponding weights for awarding 100 marks for a theory subject are as follows.

- 1. Two internal tests, each having 15 marks summing to a total of 30 marks
- 2. Tutorials / Assignments / Course Seminars summing to a total of 10 marks, and
- 3. Cluster level end-semester examination having 60 marks

B. Evaluation of Research Methodology

The course Research Methodology should be a common one for all specializations, which is envisaged to provide a research orientation for PG students. The teaching-learning process for this course should be a student-centric one in which the faculty-in-charge would take the role of a facilitator in the system. Students should be given proper guidelines for practicing the various methodologies which aim at the overall improvement of their skills required for pursuing research. The continuous assessment procedure and corresponding weights for awarding 100 marks (fully internal) for Research Methodology are as follows.

- 1. Three internal tests, each having 20 marks summing to a total of 60 marks
- 2. Tutorials / Assignments / Course Seminars summing to a total of 40 marks

C. Evaluation of Practical Courses

The continuous assessment procedure and corresponding weights for awarding 100 marks for a practical subject are as follows.

- 1. Practical Records / Results summing to a total of 40 marks
- 2. Regular Class Viva-Voce summing to a total of 20 marks
- 3. Final Test (Internal & Objective Type) having 40 marks

D. Guidelines for Seminar-1

Students have to select a topic and present a seminar in the first semester on any current topic related to the branch of specialization under the guidance of a faculty member. It is recommended that the same faculty member may serve as his/her supervisor for the miniproject in the 2^{nd} semester and also for the main project during the 3^{rd} 4^{th} semesters. Hence it is also recommended that a topic, possibly relevant to his mini-cum-main project may be selected as the topic for seminar-1, after the consultation with the guide. The student will undertake a detailed study of the subject based on currently published papers, journals, and books and present it before a committee with the Head of the Department as the chairman and two faculty members (Faculty advisor + Guide) from the department as members. The presentation shall be of 20 minutes duration with another 5 minutes allocated for a discussion session. The committee shall evaluate the seminar based on the style of presentation, technical context, and coverage of the topic, adequacy of references, depth of knowledge and the overall quality. Moreover, each student has to submit a seminar report in the prescribed format given by the Institution.

The weights for awarding 100 marks (totally internal) for the seminar-1 is as follows.

- 1. Presentation (Verbal & Nonverbal Communication skills) : 20 marks
- 2. The breadth of the topic (Coverage: Content of the slides and speech): 20 marks
- 3. Depth of knowledge (Ability to answer questions): 30 marks
- 4. Seminar Report in the prescribed format given by the Institution: 30 marks

E. Guidelines for the Mini Project

Each student has to do a mini project related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during the 3rd& 4th semesters. The mini-project is conceptualized in such a way that, some of the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of the mini project, the student can suggest a possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware-based. Mini project is envisaged as a way for implementing problem-based learning. Problems of social relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given high priority. In such interdisciplinary and inter-institutional projects, a student can have co-guide(s) from other department/ institute/ research organizations/ industry. The university encourages interdisciplinary projects and problem-based learning strategies.

There should be a Progress Evaluation Committee (PEC) for each student which is constituted by three faculty members: (1) HoD as chairman, (2) Faculty advisor, and (3) Guide. This committee should evaluate the mini project through 2 presentations - (i) a preliminary presentation which is to be held soon after finalizing the topic, and (ii) a final presentation towards the end of the semester. In between, the Guide and /or the Co-guide is entrusted for the continuous evaluation of the work progress.

The weights for awarding 100 marks (totally by internal assessment) are as follows.

- (1) Preliminary Presentation (PEC) : 20 marks
- (2) Progress Evaluation (Guide and/or Co-guide) : 30 marks
- (3) Final Presentation-cum-demonstration (PEC): 30 marks
- (4) Report (Mandatory) : 20 marks

F. Guidelines for Seminar-II

Students have to present the second seminar in 3rd semester. It is highly recommended that seminar-2 may report the literature survey being conducted as a requirement for doing the main project. Since the topic for the main project topic is to be finalized at the beginning of the 3rdsemester, one can perform the literature search and present it as a seminar towards the middle of the semester. The Progress Evaluation Committee (PEC) formed in the second semester itself, will be the panel of evaluators for Seminar-2 also. The presentation of seminar-2 shall be of 20 minutes duration with another 5 minutes allocated for a discussion session. The committee shall evaluate the seminar based on the style of presentation, technical context, and coverage of the topic, adequacy of references, depth of knowledge and the overall quality. Moreover, each student has to submit a seminar report in the prescribed format given by the Institution. It is recommended that the report for seminar-2 may be in the form of a technical paper which is suitable for publishing in Conferences / Journals as a review paper. This makes a student learn how to publish a paper and consequently develops a publishing culture among the PG student community.

The weights for awarding 100 marks (totally by internal assessment) for the seminar-2 is as follows.

- 1. Presentation (Verbal & Nonverbal Communication skills) : 20 marks
- 2. The breadth of the literature review (Coverage: Content of the slides and speech): 20 marks
- 3. Depth of knowledge (Ability to answer questions): 30 marks
- 4. Seminar Report / Paper in the prescribed format given by the Institution: 30 marks

G. Guidelines for the Project Work

Project work is to be carried out in the 3rd and 4th semesters and also to be evaluated in both

semesters. It is recommended that students should execute the project work using the facilities of the institute itself. However, external projects can be taken up in the 4th semester, if that work solves a technical problem of the external firm. The prior sanction should be obtained from the Head of Institution before taking up external project work. The project evaluation committee should study the feasibility of each project work before giving consent. The project work is also to be evaluated continuously, during the 3rd & 4th semesters through presentation sessions. Based on these evaluations the grade is finalized in the fourth semester. The internal committee (PEC) and an External Expert shall evaluate the project based on four presentations by the student during these semesters. The first presentation in the 3rd semester should be held at the beginning of the semester which would highlight the topic, objectives, and methodology. The second presentation in the same semester should bring out the work progress through the preliminary results and is to be conducted towards the end of the semester. These are evaluated internally by the PEC. Project Phase - II will be an extension of the Project Phase - I. A student has to prepare a project report, namely the thesis, towards the end of the 4th semester. Both the presentation and the thesis will be evaluated by the Committee and the External expert. The third presentation on the project is to be made towards the end of the 4th semester as a final internal presentation. At least one technical paper is to be published in Journals / Conferences to meet the requirements for final external submission. The fourth presentation is a repetition of the third one, but before an External Expert, appointed through the process of submitting the M. Tech. Thesis to the University (Cluster). The external expert will assess the quality and quantity of the work done by the student in the final (fourth) presentation. The comments of the examiners during this presentation should be incorporated in the work and report and is to be submitted as hardbound copies before the program exit by the student.

The weights for awarding 150 marks for Project shall be as follows.

- A. 3rd Semester Marks: 50 for Project Progress Evaluation
 - 1. Preliminary Presentation, evaluated by PEC: 15 marks
 - 2. Progress evaluation by the Project Supervisor/s: 20 marks
 - 3. End-semester presentation, evaluated by PEC: 15 marks
- B. 4th Semester Marks: 100 for Final Evaluation
 - 1. Project evaluation by the supervisor/s: 30 marks
 - 2. Final internal evaluation by PEC: 40 marks
 - 3. Evaluation of the thesis presentation by an External Expert: 30 marks